Coulomb 2-Body System
This is the model of two particles interacting through Coulomb forces, such as positronium, muonium, hydrogen atoms, deuterium atoms, etc.
Definitions
Antique.CoulombTwoBody
— TypeModel
This model is described with the time-independent Schrödinger equation
\[ \hat{H} \psi(\pmb{r}) = E \psi(\pmb{r}),\]
and the Hamiltonian
\[ \hat{H} = - \frac{\hbar^2}{2\mu} \nabla^2 + \frac{z_1 z_2}{r/a_0} E_\mathrm{h},\]
where $\mu=\left(\frac{1}{m_1}+\frac{1}{m_2}\right)^{-1}$ is the reduced mass of particle 1 and particle 2. The potential includes only Coulomb interaction and it does not include fine or hyperfine interactions in this model. Parameters are specified with the following struct:
CTB = CoulombTwoBody(z₁=-1, z₂=1, m₁=1.0, m₂=1.0, mₑ=1.0, a₀=1.0, Eₕ=1.0, ℏ=1.0)
$z₁$ is the charge number of particle 1, $z₂$ is the charge number of particle 2, $m₁$ is the mass of particle 1, $m₂$ is the mass of particle 2, $m_\mathrm{e}$ is the electron mass (use the same unit as $m₁$ and $m₂$. For example of hydrogen atom, use $m_\mathrm{e}=9.1093837139\times10^{-31}\mathrm{kg}$, $m_1=9.1093837139\times10^{-31}\mathrm{kg}$ and $m_2=1.67262192595\times10^{-27}\mathrm{kg}$ in the IS unit system, use $~m_\mathrm{e}=1.0~m_\mathrm{e}$, $m_1=1.0~m_\mathrm{e}$ and $m_2=1836.152673426~m_\mathrm{e}$ in the atomic unit.), $a_0$ is the Bohr radius, $E_\mathrm{h}$ is the Hartree energy and $\hbar$ is the reduced Planck constant (Dirac's constant).
References
- The Digital Library of Mathematical Functions (DLMF), 18.3 Table1, 18.5 Table1, 18.5.16, 18.5.17
- cpprefjp, assoc_legendre, assoc_laguerre
- A. Messiah, Quanfum Mechanics VOLUME Ⅰ (North-Holland Publishing Company, 1961), p.412 I. THE HYDROGEN ATOM
- D. J. Griffiths, D. F. Schroeter, Introduction to Quantum Mechanics Third Edition (Cambridge University Press, 2018) p.143 4.2 THE HYDROGEN ATOM, p.200 Problem 5.1, p.200 Problem 5.2
- W. Greiner, Quantum Mechanics: An Introduction Forth Edition (Springer, 2001) p.217 The Hydrogen Atom, p.236 9.5 Spectrum of a Diatomic Molecule
Potential
Antique.V
— MethodV(model::CoulombTwoBody, r)
\[\begin{aligned} V(r) &= - \frac{z_1 z_2 e^2}{4\pi\varepsilon_0 r} &= - \frac{e^2}{4\pi\varepsilon_0 a_0} \frac{z_1 z_2}{r/a_0} &= - \frac{z_1 z_2}{r/a_0} E_\mathrm{h}, \end{aligned}\]
where $E_\mathrm{h} = \frac{\hbar^2}{m_\mathrm{e}{a_0}^2} = \frac{e^2}{4\pi\varepsilon_0a_0} = \frac{m_\mathrm{e}e^4}{\left(4\pi\varepsilon_0\right)^2\hbar^2}$ is the Hartree energy, one of atomic unit. The domain is $0\leq r \lt \infty$.
Eigenvalues
Antique.E
— MethodE(model::CoulombTwoBody; n::Int=1)
\[E_n = -\frac{(z_1 z_2)^2}{2n^2} \frac{\mu}{m_\mathrm{e}} E_\mathrm{h},\]
where $\mu=\left(\frac{1}{m_1}+\frac{1}{m_2}\right)^{-1}$ is the reduced mass of particle 1 and particle 2, $E_\mathrm{h} = \frac{\hbar^2}{m_\mathrm{e}{a_0}^2} = \frac{e^2}{4\pi\varepsilon_0a_0} = \frac{m_\mathrm{e}e^4}{\left(4\pi\varepsilon_0\right)^2\hbar^2}$ is the Hartree energy, one of atomic unit. About atomic units, see section 3.9.2 of the IUPAC GreenBook. In other units, $E_\mathrm{h} = 27.211~386~245~988(53)~\mathrm{eV}$ from here.
Eigenfunctions
Antique.ψ
— Methodψ(model::CoulombTwoBody, r, θ, φ; n::Int=1, l::Int=0, m::Int=0)
\[\psi_{nlm}(\pmb{r}) = R_{nl}(r) Y_{lm}(\theta,\varphi)\]
The domain is $0\leq r \lt \infty, 0\leq \theta \lt \pi, 0\leq \varphi \lt 2\pi$.
Radial Functions
Antique.R
— MethodR(model::CoulombTwoBody, r; n=1, l=0)
\[R_{nl}(r) = -\sqrt{\frac{(n-l-1)!}{2n(n+l)!} \left(\frac{2Z}{n a_\mu}\right)^3} \left(\frac{2Zr}{n a_\mu}\right)^l \exp \left(-\frac{Zr}{n a_\mu}\right) L_{n+l}^{2l+1} \left(\frac{2Zr}{n a_\mu}\right),\]
where $\frac{1}{\mu} = \frac{1}{m_1}+\frac{1}{m_2}$, $a_\mu = a_0 \frac{m_\mathrm{e}}{\mu}$, $Z = - z_1 z_2$, the Laguerre polynomials are defined as $L_n(x) = \frac{1}{n!} \mathrm{e}^x \frac{\mathrm{d}^n}{\mathrm{d}x ^n} \left( \mathrm{e}^{-x} x^n \right)$, and the associated Laguerre polynomials are defined as $L_n^{k}(x) = \frac{\mathrm{d}^k}{\mathrm{d}x^k} L_n(x)$. Note that replace $2n(n+l)!$ with $2n[(n+l)!]^3$ if the Laguerre polynomials are defined as $L_n(x) = \mathrm{e}^x \frac{\mathrm{d}^n}{\mathrm{d}x ^n} \left( \mathrm{e}^{-x} x^n \right)$. Note that replace $L_{n+l}^{2l+1}(x)$ with $- L_{n-l-1}^{2l+1}(x)$ if the associated Laguerre polynomials are defined as $L_n^{k}(x) = (-1)^k \frac{\mathrm{d}^k}{\mathrm{d}x^k} L_{n+k}(x)$, which we call the generalized Laguerre polynomials. The domain is $0\leq r \lt \infty$.
Associated Laguerre Polynomials
Antique.L
— MethodL(model::CoulombTwoBody, x; n=0, k=0)
The associated Laguerre polynomials $L_n^{k}(x)$, not the generalized Laguerre polynomials $L_n^{(\alpha)}(x)$, are used in this model.
Rodrigues' formula & closed-form:
\[\begin{aligned} L_n^{k}(x) &= \frac{\mathrm{d}^k}{\mathrm{d}x^k} L_n(x) \\ &= \frac{\mathrm{d}^k}{\mathrm{d}x^k} \frac{1}{n!} \mathrm{e}^x \frac{\mathrm{d}^n}{\mathrm{d}x ^n} \left( \mathrm{e}^{-x} x^n \right) \\ &= \sum_{m=0}^{n-k} (-1)^{m+k} \frac{n!}{m!(m+k)!(n-m-k)!} x^m \\ &= (-1)^k L_{n-k}^{(k)}(x), \end{aligned}\]
where Laguerre polynomials are defined as $L_n(x)=\frac{1}{n!}\mathrm{e}^x \frac{\mathrm{d}^n}{\mathrm{d}x ^n} \left( \mathrm{e}^{-x} x^n \right)$.
Examples:
\[\begin{aligned} L_0^0(x) &= 1, \\ L_1^0(x) &= 1 - x, \\ L_1^1(x) &= 1, \\ L_2^0(x) &= 1 - 2 x + 1/2 x^2, \\ L_2^1(x) &= 2 - x, \\ L_2^2(x) &= 1, \\ L_3^0(x) &= 1 - 3 x + 3/2 x^2 - 1/6 x^3, \\ L_3^1(x) &= 3 - 3 x + 1/2 x^2, \\ L_3^2(x) &= 3 - x, \\ L_3^3(x) &= 1, \\ L_4^0(x) &= 1 - 4 x + 3 x^2 - 2/3 x^3 + 5/12 x^4, \\ L_4^1(x) &= 4 - 6 x + 2 x^2 - 1/6 x^3, \\ L_4^2(x) &= 6 - 4 x + 1/2 x^2, \\ L_4^3(x) &= 4 - x, \\ L_4^4(x) &= 1, \\ \vdots \end{aligned}\]
Spherical Harmonics
Antique.Y
— MethodY(model::CoulombTwoBody, θ, φ; l=0, m=0)
\[Y_{lm}(\theta,\varphi) = (-1)^{\frac{|m|+m}{2}} \sqrt{\frac{2l+1}{4\pi} \frac{(l-|m|)!}{(l+|m|)!}} P_l^{|m|} (\cos\theta) \mathrm{e}^{im\varphi}.\]
The domain is $0\leq \theta \lt \pi, 0\leq \varphi \lt 2\pi$. Note that some variants are connected by
\[i^{|m|+m} \sqrt{\frac{(l-|m|)!}{(l+|m|)!}} P_l^{|m|} = (-1)^{\frac{|m|+m}{2}} \sqrt{\frac{(l-|m|)!}{(l+|m|)!}} P_l^{|m|} = (-1)^m \sqrt{\frac{(l-m)!}{(l+m)!}} P_l^{m}.\]
Associated Legendre Polynomials
Antique.P
— MethodP(model::CoulombTwoBody, x; n=0, m=0)
Rodrigues' formula & closed-form:
\[\begin{aligned} P_n^m(x) &= \left( 1-x^2 \right)^{m/2} \frac{\mathrm{d}^m}{\mathrm{d}x^m} P_n(x) \\ &= \left( 1-x^2 \right)^{m/2} \frac{\mathrm{d}^m}{\mathrm{d}x^m} \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d}x ^n} \left[ \left( x^2-1 \right)^n \right] \\ &= \frac{1}{2^n} (1-x^2)^{m/2} \sum_{j=0}^{\left\lfloor\frac{n-m}{2}\right\rfloor} (-1)^j \frac{(2n-2j)!}{j! (n-j)! (n-2j-m)!} x^{(n-2j-m)}. \end{aligned},\]
where Legendre polynomials are defined as $P_n(x) = \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d}x ^n} \left[ \left( x^2-1 \right)^n \right]$. Note that $P_l^{-m} = (-1)^m \frac{(l-m)!}{(l+m)!} P_l^m$ for $m<0$. (It is not compatible with $P_k^m(t) = (-1)^m\left( 1-t^2 \right)^{m/2} \frac{\mathrm{d}^m P_k(t)}{\mathrm{d}t^m}$ caused by $(-1)^m$.) The specific formulae are given below.
Examples:
\[\begin{aligned} P_{0}^{0}(x) &= 1, \\ P_{1}^{0}(x) &= x, \\ P_{1}^{1}(x) &= \left(+1\right)\sqrt{1-x^2}, \\ P_{2}^{0}(x) &= -1/2 + 3/2 x^{2}, \\ P_{2}^{1}(x) &= \left(-3 x\right)\sqrt{1-x^2}, \\ P_{2}^{2}(x) &= 3 - 6 x, \\ P_{3}^{0}(x) &= -3/2 x + 5/2 x^{3}, \\ P_{3}^{1}(x) &= \left(3/2 - 15/2 x^{2}\right)\sqrt{1-x^2}, \\ P_{3}^{2}(x) &= 15 x - 30 x^{2}, \\ P_{3}^{3}(x) &= \left(15 - 30 x\right)\sqrt{1-x^2}, \\ P_{4}^{0}(x) &= 3/8 - 15/4 x^{2} + 35/8 x^{4}, \\ P_{4}^{1}(x) &= \left(- 15/2 x + 35/2 x^{3}\right)\sqrt{1-x^2}, \\ P_{4}^{2}(x) &= -15/2 + 15 x + 105/2 x^{2} - 105 x^{3}, \\ P_{4}^{3}(x) &= \left(105 x - 210 x^{2}\right)\sqrt{1-x^2}, \\ P_{4}^{4}(x) &= 105 - 420 x + 420 x^{2}, \\ & \vdots \end{aligned}\]
Usage & Examples
Install Antique.jl for the first use and run using Antique
before each use. The energy E()
, wave function ψ()
and potential V()
will be exported. In this system, the model is generated by CoulombTwoBody
and several parameters z₁
, z₂
, m₁
, m₂
, mₑ
, a₀
, Eₕ
and ℏ
are set as optional arguments.
using Antique
Ps = CoulombTwoBody(z₁=-1, z₂=1, m₁=1.0, m₂=1.0, mₑ=1.0, a₀=1.0, Eₕ=1.0, ℏ=1.0)
Parameters
julia> Ps.z₁
-1
julia> Ps.z₂
1
julia> Ps.m₁
1.0
julia> Ps.m₂
1.0
julia> Ps.mₑ
1.0
julia> Ps.a₀
1.0
julia> Ps.Eₕ
1.0
julia> Ps.ℏ
1.0
Eigenvalues
Example calculations for positronium:
julia> E(Ps, n=1)
-0.25
julia> E(Ps, n=2)
-0.0625
Mass and Charge Dependence
The values of masses are cited from the 2018 CODATA recommended values, E. Tiesinga, et al., Rev. Mod. Phys. 93, 025010 (2021).
me = 1.0 # me #
mµ = 206.7682830 # me # https://physics.nist.gov/cgi%2Dbin/cuu/Value?mmusme
mp = 1836.15267343 # me # https://physics.nist.gov/cgi%2Dbin/cuu/Value?mpsme
md = 3670.48296788 # me # https://physics.nist.gov/cgi%2Dbin/cuu/Value?mdsme
mt = 5496.92153573 # me # https://physics.nist.gov/cgi%2Dbin/cuu/Value?mtsme
mh = 5495.88528007 # me # https://physics.nist.gov/cgi-bin/cuu/Value?mhsme
ma = 7294.29954142 # me # https://physics.nist.gov/cgi-bin/cuu/Value?malsme
Ps = CoulombTwoBody(m₁=me, m₂=me)
Mu = CoulombTwoBody(m₁=me, m₂=mµ)
H = CoulombTwoBody(m₁=me, m₂=mp)
D = CoulombTwoBody(m₁=me, m₂=md)
T = CoulombTwoBody(m₁=me, m₂=mt)
BO = CoulombTwoBody(m₁=me, m₂=Inf)
He3⁺ = CoulombTwoBody(z₁=-1, z₂=+2, m₁=me, m₂=mh)
He4⁺ = CoulombTwoBody(z₁=-1, z₂=+2, m₁=me, m₂=ma)
He∞⁺ = CoulombTwoBody(z₁=-1, z₂=+2, m₁=me, m₂=Inf)
pμ = CoulombTwoBody(z₁=-1, z₂=+1, m₁=mµ, m₂=mp)
dμ = CoulombTwoBody(z₁=-1, z₂=+1, m₁=mµ, m₂=md)
tμ = CoulombTwoBody(z₁=-1, z₂=+1, m₁=mµ, m₂=mt)
bμ = CoulombTwoBody(z₁=-1, z₂=+1, m₁=mµ, m₂=Inf)
hμ = CoulombTwoBody(z₁=-1, z₂=+2, m₁=mµ, m₂=mh)
αμ = CoulombTwoBody(z₁=-1, z₂=+2, m₁=mµ, m₂=ma)
println(" \tE / Eₕ")
println("Ps \t", E(Ps))
println("Mu \t", E(Mu))
println("H \t", E(H))
println("D \t", E(D))
println("T \t", E(T))
println("∞H \t", E(BO))
println("³He⁺\t", E(He3⁺))
println("⁴He⁺\t", E(He4⁺))
println("∞He⁺\t", E(He∞⁺))
println("pμ \t", E(pμ))
println("dμ \t", E(dμ))
println("tμ \t", E(tμ))
println("bμ \t", E(bμ))
println("hμ \t", E(hμ))
println("αμ \t", E(αμ))
E / Eₕ
Ps -0.25
Mu -0.49759347291713435
H -0.49972783971238144
D -0.4998638152473063
T -0.49990905654132184
∞H -0.5
³He⁺ -1.9996361575877797
⁴He⁺ -1.9997258508730662
∞He⁺ -2.0
pμ -92.92041731130719
dμ -97.87081258624124
tμ -99.63629368450574
bμ -103.38414150000001
hμ -398.5424505827022
αμ -402.13735621933824
println(" \t<δ³(r)> / a₀⁻³")
println("1/8π =\t", 1/8/π)
println("Ps \t", abs(ψ(Ps,0,0,0))^2)
println("Mu \t", abs(ψ(Mu,0,0,0))^2)
println("H \t", abs(ψ(H ,0,0,0))^2)
println("D \t", abs(ψ(D ,0,0,0))^2)
println("T \t", abs(ψ(T ,0,0,0))^2)
println("∞H \t", abs(ψ(BO,0,0,0))^2)
println("1/π = \t", 1/π)
<δ³(r)> / a₀⁻³
1/8π = 0.039788735772973836
Ps 0.03978873577297385
Mu 0.3137358439360387
H 0.3177903812026296
D 0.3180498633001772
T 0.31813622856178475
∞H 0.3183098861837908
1/π = 0.3183098861837907
Lifetime of Positronium
The lifetime $\tau$ of positronium (Ps, $\mathrm{e}^+\mathrm{e}^-$) is written as
\[\tau = \frac{1}{\Gamma},\]
\[\Gamma = 4 \pi \alpha^4 c {a_0}^2 \langle\delta^3(\pmb{r})\rangle.\]
where $\langle\delta^3(\pmb{r})\rangle = \langle\psi|\delta^3(\pmb{r})|\psi\rangle = |\psi(\pmb{0})|^2 = \frac{1}{8\pi} a_0^{-3} \simeq 2.685\times10^{29}~\mathrm{m}^{-3}$ is the value of probability density at the origin ($r=0$).
# (7.169) in D. J. Griffiths, Introduction to Elementary Particles (John Wiley & Sons, Inc. 1987) ISBN 0-471-60386-4
# S. Berko, H. N. Pendleton, Annual Review of Nuclear and Particle Science, 30, 543 (1980) https://doi.org/10.1146/annurev.ns.30.120180.002551)
# A. M. Frolov, S. I. Kryuchkov, and V. H. Smith, Jr., Phys. Rev. A, 51, 4514 (1995) https://doi.org/10.1103/PhysRevA.51.4514
α = 7.2973525693e-3 # # https://physics.nist.gov/cgi-bin/cuu/Value?alph
c = 299792458 # m s-1 # https://physics.nist.gov/cgi-bin/cuu/Value?c
a₀ = 5.29177210903e-11 # m # https://physics.nist.gov/cgi-bin/cuu/Value?bohrrada0
Ps = CoulombTwoBody(z₁=1, z₂=-1, m₁=1.0, m₂=1.0, mₑ=1.0, a₀=1.0, Eₕ=1.0, ℏ=1.0)
δ = abs(ψ(Ps,0,0,0))^2 * a₀^(-3)
Γ = 4 * π * α^4 * c * a₀^2 * δ
τ = 1/Γ
println("<δ> = ", abs(ψ(Ps,0,0,0))^2, " a₀⁻³")
println(" = ", δ, " m⁻³")
println("Γ = ", Γ / 1e9, " GHz")
println("τ = ", τ / 1e-12, " ps")
<δ> = 0.03978873577297385 a₀⁻³
= 2.685076981132993e29 m⁻³
Γ = 8.0325029283017 GHz
τ = 124.49419675610734 ps
Hyperfine Splitting
The hyperfine splitting of hydrogen atoms is given as
\[\Delta E (\mathrm{H}) = -\frac{2}{3} \mu_0 \gamma_\mathrm{p} \gamma_\mathrm{e} \hbar^2 \langle\delta^3(\pmb{r})\rangle\]
in Griffiths(1982). Note that this formula is not available for deuterium (D) and positronium (Ps) because of the different spin between the proton and the deuteron for D, and the contribution of positron-electron pair annihilation for Ps. And also note that the mass of proton is used for the definitions of gyromagnetic ratio in all nucleons and nuclei:
\[\begin{aligned} &\gamma_\mathrm{e} = \frac{-e}{2 m_\mathrm{e}} g_\mathrm{e}, & &\gamma_\mathrm{e^+} = \frac{+e}{2 m_\mathrm{e}} g_\mathrm{e}, & &\gamma_\mathrm{\mu} = \frac{-e}{2 m_\mathrm{\mu}} g_\mathrm{\mu}, \\ &\gamma_\mathrm{p} = \frac{+e}{2 m_\mathrm{p}} g_\mathrm{p}, & &\gamma_\mathrm{d} = \frac{+e}{2 m_\mathrm{p}} g_\mathrm{d}, & &\gamma_\mathrm{t} = \frac{+e}{2 m_\mathrm{p}} g_\mathrm{t}, & &\gamma_\mathrm{h} = \frac{+2e}{2 m_\mathrm{p}} g_\mathrm{h}. & \end{aligned}\]
The value of the probability density at the origin is $\langle\delta^3(\pmb{r})\rangle = \langle\psi|\delta^3(\pmb{r})|\psi\rangle = |\psi(\pmb{0})|^2 \simeq \frac{1}{\pi} a_0^{-3} \simeq 2.148\times10^{30}~\mathrm{m}^{-3}$ in Mu, H, D and T. These values are very different in Ps, $^3\mathrm{He}^+$ and muonic hydrogen ($\mathrm{p\mu}$) due to the difference of reduced masses and charges. The energy can be converted to a frequency (Hz) by $v = \Delta E / h$.
a₀ = 5.29177210903e-11 # m # https://physics.nist.gov/cgi-bin/cuu/Value?bohrrada0
Eₕ = 4.3597447222071e-18 # J # https://physics.nist.gov/cgi-bin/cuu/Value?hr
ℏ = 1.054571817e-34 # J s # https://physics.nist.gov/cgi-bin/cuu/Value?hbar
me = 9.1093837015e-31 # kg # https://physics.nist.gov/cgi-bin/cuu/Value?me
mµ = 1.883531627e-28 # kg # https://physics.nist.gov/cgi-bin/cuu/Value?mmu
mp = 1.67262192369e-27 # kg # https://physics.nist.gov/cgi-bin/cuu/Value?mp
md = 3.3435837724e-27 # kg # https://physics.nist.gov/cgi-bin/cuu/Value?md
mt = 5.0073567446e-27 # kg # https://physics.nist.gov/cgi-bin/cuu/Value?mt
mh = 5.0064127796e-27 # kg # https://physics.nist.gov/cgi-bin/cuu/Value?mh
e = 1.602176634e-19 # C # https://physics.nist.gov/cgi-bin/cuu/Value?e
µ₀ = 1.25663706212e-6 # N A-2 # https://physics.nist.gov/cgi-bin/cuu/Value?mu0
h = 6.62607015e-34 # J Hz-1 # https://physics.nist.gov/cgi-bin/cuu/Value?h
eV = 1.602176634e-19 # J # https://physics.nist.gov/cgi-bin/cuu/Value?evj
ge = 2.00231930436256 # https://physics.nist.gov/cgi-bin/cuu/Value?gem
gµ = 2.0023318418 # https://physics.nist.gov/cgi-bin/cuu/Value?gmum
gp = 5.5856946893 # https://physics.nist.gov/cgi-bin/cuu/Value?gp
gd = 0.8574382338 # https://physics.nist.gov/cgi-bin/cuu/Value?gdn
gt = 5.957924931 # https://physics.nist.gov/cgi-bin/cuu/Value?gtn
gh = -4.255250615 # https://physics.nist.gov/cgi-bin/cuu/Value?ghn
Ps = CoulombTwoBody(z₁=-1, z₂=+1, m₁=me, m₂=me, mₑ=me, a₀=a₀, Eₕ=Eₕ, ℏ=ℏ)
Mu = CoulombTwoBody(z₁=-1, z₂=+1, m₁=me, m₂=mµ, mₑ=me, a₀=a₀, Eₕ=Eₕ, ℏ=ℏ)
H = CoulombTwoBody(z₁=-1, z₂=+1, m₁=me, m₂=mp, mₑ=me, a₀=a₀, Eₕ=Eₕ, ℏ=ℏ)
D = CoulombTwoBody(z₁=-1, z₂=+1, m₁=me, m₂=md, mₑ=me, a₀=a₀, Eₕ=Eₕ, ℏ=ℏ)
T = CoulombTwoBody(z₁=-1, z₂=+1, m₁=me, m₂=mt, mₑ=me, a₀=a₀, Eₕ=Eₕ, ℏ=ℏ)
he = CoulombTwoBody(z₁=-1, z₂=+2, m₁=me, m₂=mh, mₑ=me, a₀=a₀, Eₕ=Eₕ, ℏ=ℏ)
pμ = CoulombTwoBody(z₁=-1, z₂=+1, m₁=mµ, m₂=mp, mₑ=me, a₀=a₀, Eₕ=Eₕ, ℏ=ℏ)
ΔE_H = 2/3 / 4 * µ₀ * ℏ^2 * e^2 * ge / me * gp / mp * abs(ψ(H,0,0,0))^2
ΔE_D = 1 / 4 * µ₀ * ℏ^2 * e^2 * ge / me * gd / mp * abs(ψ(D,0,0,0))^2
ΔE_T = 2/3 / 4 * µ₀ * ℏ^2 * e^2 * ge / me * gt / mp * abs(ψ(H,0,0,0))^2
ΔE_Ps = 7/6 / 4 * µ₀ * ℏ^2 * e^2 * ge / me * ge / me * abs(ψ(Ps,0,0,0))^2
ΔE_Mu = 2/3 / 4 * µ₀ * ℏ^2 * e^2 * ge / me * gµ / mµ * abs(ψ(Mu,0,0,0))^2
ΔE_he = 2/3 / 4 * µ₀ * ℏ^2 * e^2 * ge / me * gh / mp * abs(ψ(he,0,0,0))^2
ΔE_pµ = 2/3 / 4 * µ₀ * ℏ^2 * e^2 * gµ / mµ * gp / mp * abs(ψ(pµ,0,0,0))^2
# Karshenboim(2001) https://doi.org/10.48550/arXiv.hep-ph/0109128
# Karshenboim(2003) https://doi.org/10.48550/arXiv.hep-ph/0310099
# Griffiths(1982) https://doi.org/10.1119/1.12733
# Adamczak(2012) https://doi.org/10.1016/j.nimb.2012.04.001
println("H \t", ΔE_H / h / 1e6, " MHz\t Antique.jl + CODATA2018")
println(" \t", "1420.405751768(1) MHz\t Karshenboim(2001)")
println("D \t", ΔE_D / h / 1e6, " MHz\t Antique.jl + CODATA2018")
println(" \t", "327.384352522(2) MHz\t Karshenboim(2001)")
println("T \t", ΔE_T / h / 1e6, " MHz\t Antique.jl + CODATA2018")
println(" \t", "1516.701470773(8) MHz\t Karshenboim(2001)")
println("Ps\t", ΔE_Ps / h / 1e6, " MHz\t Antique.jl + CODATA2018")
println(" \t", "203391.7(6) MHz\t Karshenboim(2003)")
println("Mu\t", ΔE_Mu / h / 1e6, " MHz\t Antique.jl + CODATA2018")
println(" \t", "4463.30278(5) MHz\t Karshenboim(2001)")
println("³He⁺\t", ΔE_he / h / 1e6, " MHz\t Antique.jl + CODATA2018")
println(" \t", "-8665.649867(10) MHz\t Karshenboim(2001)")
println("µp\t", ΔE_pµ / h / 1e12, " THz\t Antique.jl + CODATA2018")
println(" \t", 0.182725*eV / h / 1e12 , " THz\t Griffiths(1982), Adamczak(2012)")
H 1420.4854518754269 MHz Antique.jl + CODATA2018
1420.405751768(1) MHz Karshenboim(2001)
D 327.34684982805805 MHz Antique.jl + CODATA2018
327.384352522(2) MHz Karshenboim(2001)
T 1515.1464873408624 MHz Antique.jl + CODATA2018
1516.701470773(8) MHz Karshenboim(2001)
Ps 204860.9400441627 MHz Antique.jl + CODATA2018
203391.7(6) MHz Karshenboim(2003)
Mu 4464.202736244739 MHz Antique.jl + CODATA2018
4463.30278(5) MHz Karshenboim(2001)
³He⁺ -8666.566269930268 MHz Antique.jl + CODATA2018
-8665.649867(10) MHz Karshenboim(2001)
µp 44.16603467817586 THz Antique.jl + CODATA2018
44.18270842599667 THz Griffiths(1982), Adamczak(2012)
1S wave function of Ps:
import Antique
Ps = Antique.CoulombTwoBody(z₁=-1, z₂=1, m₁=1.0, m₂=1.0, mₑ=1.0, a₀=1.0, Eₕ=1.0, ℏ=1.0)
@show Antique.E(Ps)
using CairoMakie
fig = Figure(
size = (420,300),
fontsize = 11.5,
backgroundcolor = :transparent
)
ax = Axis(
fig[1,1],
xlabel = L"$r / a_0$",
ylabel = L"$\psi(r) / a_0^{-3/2}$",
ylabelsize = 16.5,
xlabelsize = 16.5,
)
lines!(ax, 0..10, r -> exp(-r/2)/sqrt(8π), label="exp(-r/2)/sqrt(8π)")
lines!(ax, 0..2, r -> (1-r/2)/sqrt(8π), label="(1-r/2)/sqrt(8π)")
lines!(ax, 0..10, r -> abs(Antique.ψ(Ps,r,0,0)), linestyle=:dash, color=:black, label="Antique.jl")
axislegend(ax, position=:rt, framevisible=false)
fig

Testing
Unit testing and integration testing were done using a computer algebra system (Symbolics.jl) and numerical integration (QuadGK.jl). The test script is here.
Associated Legendre Polynomials $P_n^m(x)$
\[\begin{aligned} P_n^m(x) &= \left( 1-x^2 \right)^{m/2} \frac{\mathrm{d}^m}{\mathrm{d}x^m} P_n(x) \\ &= \left( 1-x^2 \right)^{m/2} \frac{\mathrm{d}^m}{\mathrm{d}x^m} \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d}x ^n} \left[ \left( x^2-1 \right)^n \right] \\ &= \frac{1}{2^n} (1-x^2)^{m/2} \sum_{j=0}^{\left\lfloor\frac{n-m}{2}\right\rfloor} (-1)^j \frac{(2n-2j)!}{j! (n-j)! (n-2j-m)!} x^{(n-2j-m)}. \end{aligned}\]
$n=0, m=0:$ ✔
\[\begin{aligned} P_{0}^{0}(x) = 1 &= 1 \\ &= 1 \end{aligned}\]
$n=1, m=0:$ ✔
\[\begin{aligned} P_{1}^{0}(x) = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}x} \left( -1 + x^{2} \right) &= x \\ &= x \end{aligned}\]
$n=1, m=1:$ ✔
\[\begin{aligned} P_{1}^{1}(x) = \left( 1 - x^{2} \right)^{\frac{1}{2}} \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}x} \left( -1 + x^{2} \right) &= \left( 1 - x^{2} \right)^{\frac{1}{2}} \\ &= \left( 1 - x^{2} \right)^{\frac{1}{2}} \end{aligned}\]
$n=2, m=0:$ ✔
\[\begin{aligned} P_{2}^{0}(x) = \frac{1}{8} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \left( -1 + x^{2} \right)^{2} &= \frac{-1}{2} + \frac{3}{2} x^{2} \\ &= \frac{-1}{2} + \frac{3}{2} x^{2} \end{aligned}\]
$n=2, m=1:$ ✔
\[\begin{aligned} P_{2}^{1}(x) = \left( 1 - x^{2} \right)^{\frac{1}{2}} \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{8} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \left( -1 + x^{2} \right)^{2} &= 3 \left( 1 - x^{2} \right)^{\frac{1}{2}} x \\ &= 3 \left( 1 - x^{2} \right)^{\frac{1}{2}} x \end{aligned}\]
$n=2, m=2:$ ✔
\[\begin{aligned} P_{2}^{2}(x) = \left( 1 - x^{2} \right) \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{8} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \left( -1 + x^{2} \right)^{2} &= 3 - 3 x^{2} \\ &= 3 - 3 x^{2} \end{aligned}\]
$n=3, m=0:$ ✔
\[\begin{aligned} P_{3}^{0}(x) = \frac{1}{48} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \left( -1 + x^{2} \right)^{3} &= - \frac{3}{2} x + \frac{5}{2} x^{3} \\ &= - \frac{3}{2} x + \frac{5}{2} x^{3} \end{aligned}\]
$n=3, m=1:$ ✔
\[\begin{aligned} P_{3}^{1}(x) = \left( 1 - x^{2} \right)^{\frac{1}{2}} \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{48} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \left( -1 + x^{2} \right)^{3} &= - \frac{3}{2} \left( 1 - x^{2} \right)^{\frac{1}{2}} + \frac{15}{2} x^{2} \left( 1 - x^{2} \right)^{\frac{1}{2}} \\ &= - \frac{3}{2} \left( 1 - x^{2} \right)^{\frac{1}{2}} + \frac{15}{2} x^{2} \left( 1 - x^{2} \right)^{\frac{1}{2}} \end{aligned}\]
$n=3, m=2:$ ✔
\[\begin{aligned} P_{3}^{2}(x) = \left( 1 - x^{2} \right) \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{48} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \left( -1 + x^{2} \right)^{3} &= 15 x - 15 x^{3} \\ &= 15 x - 15 x^{3} \end{aligned}\]
$n=3, m=3:$ ✔
\[\begin{aligned} P_{3}^{3}(x) = \left( 1 - x^{2} \right)^{\frac{3}{2}} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{48} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \left( -1 + x^{2} \right)^{3} &= 15 \left( 1 - x^{2} \right)^{\frac{3}{2}} \\ &= 15 \left( 1 - x^{2} \right)^{\frac{3}{2}} \end{aligned}\]
$n=4, m=0:$ ✔
\[\begin{aligned} P_{4}^{0}(x) = \frac{1}{384} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \left( -1 + x^{2} \right)^{4} &= \frac{3}{8} - \frac{15}{4} x^{2} + \frac{35}{8} x^{4} \\ &= \frac{3}{8} - \frac{15}{4} x^{2} + \frac{35}{8} x^{4} \end{aligned}\]
$n=4, m=1:$ ✔
\[\begin{aligned} P_{4}^{1}(x) = \left( 1 - x^{2} \right)^{\frac{1}{2}} \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{384} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \left( -1 + x^{2} \right)^{4} &= - \frac{15}{2} \left( 1 - x^{2} \right)^{\frac{1}{2}} x + \frac{35}{2} x^{3} \left( 1 - x^{2} \right)^{\frac{1}{2}} \\ &= - \frac{15}{2} \left( 1 - x^{2} \right)^{\frac{1}{2}} x + \frac{35}{2} x^{3} \left( 1 - x^{2} \right)^{\frac{1}{2}} \end{aligned}\]
$n=4, m=2:$ ✔
\[\begin{aligned} P_{4}^{2}(x) = \left( 1 - x^{2} \right) \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{384} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \left( -1 + x^{2} \right)^{4} &= \frac{-15}{2} + 60 x^{2} - \frac{105}{2} x^{4} \\ &= \frac{-15}{2} + 60 x^{2} - \frac{105}{2} x^{4} \end{aligned}\]
$n=4, m=3:$ ✔
\[\begin{aligned} P_{4}^{3}(x) = \left( 1 - x^{2} \right)^{\frac{3}{2}} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{384} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \left( -1 + x^{2} \right)^{4} &= 105 \left( 1 - x^{2} \right)^{\frac{3}{2}} x \\ &= 105 \left( 1 - x^{2} \right)^{\frac{3}{2}} x \end{aligned}\]
$n=4, m=4:$ ✔
\[\begin{aligned} P_{4}^{4}(x) = \left( 1 - x^{2} \right)^{2} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{384} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \left( -1 + x^{2} \right)^{4} &= 105 \left( 1 - x^{2} \right)^{2} \\ &= 105 \left( 1 - x^{2} \right)^{2} \end{aligned}\]
Normalization & Orthogonality of $P_n^m(x)$
\[\int_{-1}^{1} P_i^m(x) P_j^m(x) \mathrm{d}x = \frac{2(j+m)!}{(2j+1)(j-m)!} \delta_{ij}\]
m | i | j | analytical | numerical
-- | -- | -- | -------------- | --------------
0 | 0 | 0 | 2.000000000 | 2.000000000 ✔
0 | 0 | 1 | 0.000000000 | 0.000000000 ✔
0 | 0 | 2 | 0.000000000 | 0.000000000 ✔
0 | 0 | 3 | 0.000000000 | -0.000000000 ✔
0 | 0 | 4 | 0.000000000 | 0.000000000 ✔
0 | 0 | 5 | 0.000000000 | -0.000000000 ✔
0 | 0 | 6 | 0.000000000 | -0.000000000 ✔
0 | 0 | 7 | 0.000000000 | 0.000000000 ✔
0 | 0 | 8 | 0.000000000 | -0.000000000 ✔
0 | 0 | 9 | 0.000000000 | -0.000000000 ✔
0 | 1 | 0 | 0.000000000 | 0.000000000 ✔
0 | 1 | 1 | 0.666666667 | 0.666666667 ✔
0 | 1 | 2 | 0.000000000 | 0.000000000 ✔
0 | 1 | 3 | 0.000000000 | -0.000000000 ✔
0 | 1 | 4 | 0.000000000 | 0.000000000 ✔
0 | 1 | 5 | 0.000000000 | -0.000000000 ✔
0 | 1 | 6 | 0.000000000 | 0.000000000 ✔
0 | 1 | 7 | 0.000000000 | -0.000000000 ✔
0 | 1 | 8 | 0.000000000 | -0.000000000 ✔
0 | 1 | 9 | 0.000000000 | -0.000000000 ✔
0 | 2 | 0 | 0.000000000 | 0.000000000 ✔
0 | 2 | 1 | 0.000000000 | 0.000000000 ✔
0 | 2 | 2 | 0.400000000 | 0.400000000 ✔
0 | 2 | 3 | 0.000000000 | 0.000000000 ✔
0 | 2 | 4 | 0.000000000 | 0.000000000 ✔
0 | 2 | 5 | 0.000000000 | 0.000000000 ✔
0 | 2 | 6 | 0.000000000 | -0.000000000 ✔
0 | 2 | 7 | 0.000000000 | 0.000000000 ✔
0 | 2 | 8 | 0.000000000 | -0.000000000 ✔
0 | 2 | 9 | 0.000000000 | -0.000000000 ✔
0 | 3 | 0 | 0.000000000 | -0.000000000 ✔
0 | 3 | 1 | 0.000000000 | -0.000000000 ✔
0 | 3 | 2 | 0.000000000 | 0.000000000 ✔
0 | 3 | 3 | 0.285714286 | 0.285714286 ✔
0 | 3 | 4 | 0.000000000 | 0.000000000 ✔
0 | 3 | 5 | 0.000000000 | -0.000000000 ✔
0 | 3 | 6 | 0.000000000 | -0.000000000 ✔
0 | 3 | 7 | 0.000000000 | 0.000000000 ✔
0 | 3 | 8 | 0.000000000 | -0.000000000 ✔
0 | 3 | 9 | 0.000000000 | -0.000000000 ✔
0 | 4 | 0 | 0.000000000 | 0.000000000 ✔
0 | 4 | 1 | 0.000000000 | 0.000000000 ✔
0 | 4 | 2 | 0.000000000 | 0.000000000 ✔
0 | 4 | 3 | 0.000000000 | 0.000000000 ✔
0 | 4 | 4 | 0.222222222 | 0.222222222 ✔
0 | 4 | 5 | 0.000000000 | 0.000000000 ✔
0 | 4 | 6 | 0.000000000 | -0.000000000 ✔
0 | 4 | 7 | 0.000000000 | 0.000000000 ✔
0 | 4 | 8 | 0.000000000 | -0.000000000 ✔
0 | 4 | 9 | 0.000000000 | 0.000000000 ✔
0 | 5 | 0 | 0.000000000 | -0.000000000 ✔
0 | 5 | 1 | 0.000000000 | -0.000000000 ✔
0 | 5 | 2 | 0.000000000 | 0.000000000 ✔
0 | 5 | 3 | 0.000000000 | -0.000000000 ✔
0 | 5 | 4 | 0.000000000 | 0.000000000 ✔
0 | 5 | 5 | 0.181818182 | 0.181818182 ✔
0 | 5 | 6 | 0.000000000 | -0.000000000 ✔
0 | 5 | 7 | 0.000000000 | -0.000000000 ✔
0 | 5 | 8 | 0.000000000 | 0.000000000 ✔
0 | 5 | 9 | 0.000000000 | -0.000000000 ✔
0 | 6 | 0 | 0.000000000 | -0.000000000 ✔
0 | 6 | 1 | 0.000000000 | 0.000000000 ✔
0 | 6 | 2 | 0.000000000 | -0.000000000 ✔
0 | 6 | 3 | 0.000000000 | -0.000000000 ✔
0 | 6 | 4 | 0.000000000 | -0.000000000 ✔
0 | 6 | 5 | 0.000000000 | -0.000000000 ✔
0 | 6 | 6 | 0.153846154 | 0.153846154 ✔
0 | 6 | 7 | 0.000000000 | -0.000000000 ✔
0 | 6 | 8 | 0.000000000 | -0.000000000 ✔
0 | 6 | 9 | 0.000000000 | 0.000000000 ✔
0 | 7 | 0 | 0.000000000 | 0.000000000 ✔
0 | 7 | 1 | 0.000000000 | -0.000000000 ✔
0 | 7 | 2 | 0.000000000 | 0.000000000 ✔
0 | 7 | 3 | 0.000000000 | 0.000000000 ✔
0 | 7 | 4 | 0.000000000 | 0.000000000 ✔
0 | 7 | 5 | 0.000000000 | -0.000000000 ✔
0 | 7 | 6 | 0.000000000 | -0.000000000 ✔
0 | 7 | 7 | 0.133333333 | 0.133333333 ✔
0 | 7 | 8 | 0.000000000 | -0.000000000 ✔
0 | 7 | 9 | 0.000000000 | -0.000000000 ✔
0 | 8 | 0 | 0.000000000 | -0.000000000 ✔
0 | 8 | 1 | 0.000000000 | -0.000000000 ✔
0 | 8 | 2 | 0.000000000 | -0.000000000 ✔
0 | 8 | 3 | 0.000000000 | -0.000000000 ✔
0 | 8 | 4 | 0.000000000 | -0.000000000 ✔
0 | 8 | 5 | 0.000000000 | 0.000000000 ✔
0 | 8 | 6 | 0.000000000 | -0.000000000 ✔
0 | 8 | 7 | 0.000000000 | -0.000000000 ✔
0 | 8 | 8 | 0.117647059 | 0.117647059 ✔
0 | 8 | 9 | 0.000000000 | -0.000000000 ✔
0 | 9 | 0 | 0.000000000 | -0.000000000 ✔
0 | 9 | 1 | 0.000000000 | -0.000000000 ✔
0 | 9 | 2 | 0.000000000 | -0.000000000 ✔
0 | 9 | 3 | 0.000000000 | -0.000000000 ✔
0 | 9 | 4 | 0.000000000 | 0.000000000 ✔
0 | 9 | 5 | 0.000000000 | -0.000000000 ✔
0 | 9 | 6 | 0.000000000 | 0.000000000 ✔
0 | 9 | 7 | 0.000000000 | -0.000000000 ✔
0 | 9 | 8 | 0.000000000 | -0.000000000 ✔
0 | 9 | 9 | 0.105263158 | 0.105263158 ✔
1 | 1 | 1 | 1.333333333 | 1.333333333 ✔
1 | 1 | 2 | 0.000000000 | 0.000000000 ✔
1 | 1 | 3 | 0.000000000 | 0.000000000 ✔
1 | 1 | 4 | 0.000000000 | 0.000000000 ✔
1 | 1 | 5 | 0.000000000 | 0.000000000 ✔
1 | 1 | 6 | 0.000000000 | 0.000000000 ✔
1 | 1 | 7 | 0.000000000 | 0.000000000 ✔
1 | 1 | 8 | 0.000000000 | 0.000000000 ✔
1 | 1 | 9 | 0.000000000 | 0.000000000 ✔
1 | 2 | 1 | 0.000000000 | 0.000000000 ✔
1 | 2 | 2 | 2.400000000 | 2.400000000 ✔
1 | 2 | 3 | 0.000000000 | 0.000000000 ✔
1 | 2 | 4 | 0.000000000 | 0.000000000 ✔
1 | 2 | 5 | 0.000000000 | -0.000000000 ✔
1 | 2 | 6 | 0.000000000 | 0.000000000 ✔
1 | 2 | 7 | 0.000000000 | 0.000000000 ✔
1 | 2 | 8 | 0.000000000 | 0.000000000 ✔
1 | 2 | 9 | 0.000000000 | -0.000000000 ✔
1 | 3 | 1 | 0.000000000 | 0.000000000 ✔
1 | 3 | 2 | 0.000000000 | 0.000000000 ✔
1 | 3 | 3 | 3.428571429 | 3.428571429 ✔
1 | 3 | 4 | 0.000000000 | 0.000000000 ✔
1 | 3 | 5 | 0.000000000 | -0.000000000 ✔
1 | 3 | 6 | 0.000000000 | 0.000000000 ✔
1 | 3 | 7 | 0.000000000 | -0.000000000 ✔
1 | 3 | 8 | 0.000000000 | 0.000000000 ✔
1 | 3 | 9 | 0.000000000 | 0.000000000 ✔
1 | 4 | 1 | 0.000000000 | 0.000000000 ✔
1 | 4 | 2 | 0.000000000 | 0.000000000 ✔
1 | 4 | 3 | 0.000000000 | 0.000000000 ✔
1 | 4 | 4 | 4.444444444 | 4.444444444 ✔
1 | 4 | 5 | 0.000000000 | 0.000000000 ✔
1 | 4 | 6 | 0.000000000 | 0.000000000 ✔
1 | 4 | 7 | 0.000000000 | 0.000000000 ✔
1 | 4 | 8 | 0.000000000 | 0.000000000 ✔
1 | 4 | 9 | 0.000000000 | 0.000000000 ✔
1 | 5 | 1 | 0.000000000 | 0.000000000 ✔
1 | 5 | 2 | 0.000000000 | -0.000000000 ✔
1 | 5 | 3 | 0.000000000 | -0.000000000 ✔
1 | 5 | 4 | 0.000000000 | 0.000000000 ✔
1 | 5 | 5 | 5.454545455 | 5.454545455 ✔
1 | 5 | 6 | 0.000000000 | -0.000000000 ✔
1 | 5 | 7 | 0.000000000 | -0.000000000 ✔
1 | 5 | 8 | 0.000000000 | 0.000000000 ✔
1 | 5 | 9 | 0.000000000 | 0.000000000 ✔
1 | 6 | 1 | 0.000000000 | 0.000000000 ✔
1 | 6 | 2 | 0.000000000 | 0.000000000 ✔
1 | 6 | 3 | 0.000000000 | 0.000000000 ✔
1 | 6 | 4 | 0.000000000 | 0.000000000 ✔
1 | 6 | 5 | 0.000000000 | -0.000000000 ✔
1 | 6 | 6 | 6.461538462 | 6.461538462 ✔
1 | 6 | 7 | 0.000000000 | 0.000000000 ✔
1 | 6 | 8 | 0.000000000 | -0.000000000 ✔
1 | 6 | 9 | 0.000000000 | -0.000000000 ✔
1 | 7 | 1 | 0.000000000 | 0.000000000 ✔
1 | 7 | 2 | 0.000000000 | 0.000000000 ✔
1 | 7 | 3 | 0.000000000 | -0.000000000 ✔
1 | 7 | 4 | 0.000000000 | 0.000000000 ✔
1 | 7 | 5 | 0.000000000 | -0.000000000 ✔
1 | 7 | 6 | 0.000000000 | 0.000000000 ✔
1 | 7 | 7 | 7.466666667 | 7.466666667 ✔
1 | 7 | 8 | 0.000000000 | -0.000000000 ✔
1 | 7 | 9 | 0.000000000 | 0.000000000 ✔
1 | 8 | 1 | 0.000000000 | 0.000000000 ✔
1 | 8 | 2 | 0.000000000 | 0.000000000 ✔
1 | 8 | 3 | 0.000000000 | 0.000000000 ✔
1 | 8 | 4 | 0.000000000 | 0.000000000 ✔
1 | 8 | 5 | 0.000000000 | 0.000000000 ✔
1 | 8 | 6 | 0.000000000 | -0.000000000 ✔
1 | 8 | 7 | 0.000000000 | -0.000000000 ✔
1 | 8 | 8 | 8.470588235 | 8.470588235 ✔
1 | 8 | 9 | 0.000000000 | -0.000000000 ✔
1 | 9 | 1 | 0.000000000 | 0.000000000 ✔
1 | 9 | 2 | 0.000000000 | -0.000000000 ✔
1 | 9 | 3 | 0.000000000 | 0.000000000 ✔
1 | 9 | 4 | 0.000000000 | 0.000000000 ✔
1 | 9 | 5 | 0.000000000 | 0.000000000 ✔
1 | 9 | 6 | 0.000000000 | -0.000000000 ✔
1 | 9 | 7 | 0.000000000 | 0.000000000 ✔
1 | 9 | 8 | 0.000000000 | -0.000000000 ✔
1 | 9 | 9 | 9.473684211 | 9.473684211 ✔
2 | 2 | 2 | 9.600000000 | 9.600000000 ✔
2 | 2 | 3 | 0.000000000 | 0.000000000 ✔
2 | 2 | 4 | 0.000000000 | 0.000000000 ✔
2 | 2 | 5 | 0.000000000 | 0.000000000 ✔
2 | 2 | 6 | 0.000000000 | -0.000000000 ✔
2 | 2 | 7 | 0.000000000 | 0.000000000 ✔
2 | 2 | 8 | 0.000000000 | 0.000000000 ✔
2 | 2 | 9 | 0.000000000 | -0.000000000 ✔
2 | 3 | 2 | 0.000000000 | 0.000000000 ✔
2 | 3 | 3 | 34.285714286 | 34.285714286 ✔
2 | 3 | 4 | 0.000000000 | 0.000000000 ✔
2 | 3 | 5 | 0.000000000 | 0.000000000 ✔
2 | 3 | 6 | 0.000000000 | 0.000000000 ✔
2 | 3 | 7 | 0.000000000 | -0.000000000 ✔
2 | 3 | 8 | 0.000000000 | 0.000000000 ✔
2 | 3 | 9 | 0.000000000 | -0.000000000 ✔
2 | 4 | 2 | 0.000000000 | 0.000000000 ✔
2 | 4 | 3 | 0.000000000 | 0.000000000 ✔
2 | 4 | 4 | 80.000000000 | 80.000000000 ✔
2 | 4 | 5 | 0.000000000 | 0.000000000 ✔
2 | 4 | 6 | 0.000000000 | -0.000000000 ✔
2 | 4 | 7 | 0.000000000 | -0.000000000 ✔
2 | 4 | 8 | 0.000000000 | 0.000000000 ✔
2 | 4 | 9 | 0.000000000 | 0.000000000 ✔
2 | 5 | 2 | 0.000000000 | 0.000000000 ✔
2 | 5 | 3 | 0.000000000 | 0.000000000 ✔
2 | 5 | 4 | 0.000000000 | 0.000000000 ✔
2 | 5 | 5 | 152.727272727 | 152.727272727 ✔
2 | 5 | 6 | 0.000000000 | -0.000000000 ✔
2 | 5 | 7 | 0.000000000 | 0.000000000 ✔
2 | 5 | 8 | 0.000000000 | 0.000000000 ✔
2 | 5 | 9 | 0.000000000 | 0.000000000 ✔
2 | 6 | 2 | 0.000000000 | -0.000000000 ✔
2 | 6 | 3 | 0.000000000 | 0.000000000 ✔
2 | 6 | 4 | 0.000000000 | -0.000000000 ✔
2 | 6 | 5 | 0.000000000 | -0.000000000 ✔
2 | 6 | 6 | 258.461538462 | 258.461538462 ✔
2 | 6 | 7 | 0.000000000 | 0.000000000 ✔
2 | 6 | 8 | 0.000000000 | -0.000000000 ✔
2 | 6 | 9 | 0.000000000 | 0.000000000 ✔
2 | 7 | 2 | 0.000000000 | 0.000000000 ✔
2 | 7 | 3 | 0.000000000 | -0.000000000 ✔
2 | 7 | 4 | 0.000000000 | -0.000000000 ✔
2 | 7 | 5 | 0.000000000 | 0.000000000 ✔
2 | 7 | 6 | 0.000000000 | 0.000000000 ✔
2 | 7 | 7 | 403.200000000 | 403.200000000 ✔
2 | 7 | 8 | 0.000000000 | -0.000000000 ✔
2 | 7 | 9 | 0.000000000 | -0.000000000 ✔
2 | 8 | 2 | 0.000000000 | 0.000000000 ✔
2 | 8 | 3 | 0.000000000 | 0.000000000 ✔
2 | 8 | 4 | 0.000000000 | 0.000000000 ✔
2 | 8 | 5 | 0.000000000 | 0.000000000 ✔
2 | 8 | 6 | 0.000000000 | -0.000000000 ✔
2 | 8 | 7 | 0.000000000 | -0.000000000 ✔
2 | 8 | 8 | 592.941176471 | 592.941176471 ✔
2 | 8 | 9 | 0.000000000 | -0.000000000 ✔
2 | 9 | 2 | 0.000000000 | -0.000000000 ✔
2 | 9 | 3 | 0.000000000 | -0.000000000 ✔
2 | 9 | 4 | 0.000000000 | 0.000000000 ✔
2 | 9 | 5 | 0.000000000 | 0.000000000 ✔
2 | 9 | 6 | 0.000000000 | 0.000000000 ✔
2 | 9 | 7 | 0.000000000 | -0.000000000 ✔
2 | 9 | 8 | 0.000000000 | -0.000000000 ✔
2 | 9 | 9 | 833.684210526 | 833.684210526 ✔
3 | 3 | 3 | 205.714285714 | 205.714285714 ✔
3 | 3 | 4 | 0.000000000 | -0.000000000 ✔
3 | 3 | 5 | 0.000000000 | -0.000000000 ✔
3 | 3 | 6 | 0.000000000 | 0.000000000 ✔
3 | 3 | 7 | 0.000000000 | -0.000000000 ✔
3 | 3 | 8 | 0.000000000 | -0.000000000 ✔
3 | 3 | 9 | 0.000000000 | -0.000000000 ✔
3 | 4 | 3 | 0.000000000 | -0.000000000 ✔
3 | 4 | 4 | 1120.000000000 | 1120.000000000 ✔
3 | 4 | 5 | 0.000000000 | 0.000000000 ✔
3 | 4 | 6 | 0.000000000 | 0.000000000 ✔
3 | 4 | 7 | 0.000000000 | 0.000000000 ✔
3 | 4 | 8 | 0.000000000 | 0.000000000 ✔
3 | 4 | 9 | 0.000000000 | 0.000000000 ✔
3 | 5 | 3 | 0.000000000 | -0.000000000 ✔
3 | 5 | 4 | 0.000000000 | 0.000000000 ✔
3 | 5 | 5 | 3665.454545455 | 3665.454545455 ✔
3 | 5 | 6 | 0.000000000 | 0.000000000 ✔
3 | 5 | 7 | 0.000000000 | -0.000000000 ✔
3 | 5 | 8 | 0.000000000 | -0.000000000 ✔
3 | 5 | 9 | 0.000000000 | -0.000000000 ✔
3 | 6 | 3 | 0.000000000 | 0.000000000 ✔
3 | 6 | 4 | 0.000000000 | 0.000000000 ✔
3 | 6 | 5 | 0.000000000 | 0.000000000 ✔
3 | 6 | 6 | 9304.615384615 | 9304.615384615 ✔
3 | 6 | 7 | 0.000000000 | -0.000000000 ✔
3 | 6 | 8 | 0.000000000 | 0.000000000 ✔
3 | 6 | 9 | 0.000000000 | 0.000000000 ✔
3 | 7 | 3 | 0.000000000 | -0.000000000 ✔
3 | 7 | 4 | 0.000000000 | 0.000000000 ✔
3 | 7 | 5 | 0.000000000 | -0.000000000 ✔
3 | 7 | 6 | 0.000000000 | -0.000000000 ✔
3 | 7 | 7 | 20160.000000000 | 20160.000000000 ✔
3 | 7 | 8 | 0.000000000 | 0.000000000 ✔
3 | 7 | 9 | 0.000000000 | 0.000000000 ✔
3 | 8 | 3 | 0.000000000 | -0.000000000 ✔
3 | 8 | 4 | 0.000000000 | 0.000000000 ✔
3 | 8 | 5 | 0.000000000 | -0.000000000 ✔
3 | 8 | 6 | 0.000000000 | 0.000000000 ✔
3 | 8 | 7 | 0.000000000 | 0.000000000 ✔
3 | 8 | 8 | 39134.117647059 | 39134.117647059 ✔
3 | 8 | 9 | 0.000000000 | -0.000000000 ✔
3 | 9 | 3 | 0.000000000 | -0.000000000 ✔
3 | 9 | 4 | 0.000000000 | 0.000000000 ✔
3 | 9 | 5 | 0.000000000 | -0.000000000 ✔
3 | 9 | 6 | 0.000000000 | 0.000000000 ✔
3 | 9 | 7 | 0.000000000 | 0.000000000 ✔
3 | 9 | 8 | 0.000000000 | -0.000000000 ✔
3 | 9 | 9 | 70029.473684211 | 70029.473684211 ✔
4 | 4 | 4 | 8960.000000000 | 8960.000000000 ✔
4 | 4 | 5 | 0.000000000 | -0.000000000 ✔
4 | 4 | 6 | 0.000000000 | -0.000000000 ✔
4 | 4 | 7 | 0.000000000 | -0.000000000 ✔
4 | 4 | 8 | 0.000000000 | 0.000000000 ✔
4 | 4 | 9 | 0.000000000 | 0.000000000 ✔
4 | 5 | 4 | 0.000000000 | -0.000000000 ✔
4 | 5 | 5 | 65978.181818182 | 65978.181818182 ✔
4 | 5 | 6 | 0.000000000 | -0.000000000 ✔
4 | 5 | 7 | 0.000000000 | -0.000000000 ✔
4 | 5 | 8 | 0.000000000 | -0.000000000 ✔
4 | 5 | 9 | 0.000000000 | 0.000000000 ✔
4 | 6 | 4 | 0.000000000 | -0.000000000 ✔
4 | 6 | 5 | 0.000000000 | -0.000000000 ✔
4 | 6 | 6 | 279138.461538462 | 279138.461538462 ✔
4 | 6 | 7 | 0.000000000 | -0.000000000 ✔
4 | 6 | 8 | 0.000000000 | 0.000000000 ✔
4 | 6 | 9 | 0.000000000 | 0.000000000 ✔
4 | 7 | 4 | 0.000000000 | -0.000000000 ✔
4 | 7 | 5 | 0.000000000 | -0.000000000 ✔
4 | 7 | 6 | 0.000000000 | -0.000000000 ✔
4 | 7 | 7 | 887040.000000000 | 887040.000000000 ✔
4 | 7 | 8 | 0.000000000 | 0.000000000 ✔
4 | 7 | 9 | 0.000000000 | 0.000000000 ✔
4 | 8 | 4 | 0.000000000 | 0.000000000 ✔
4 | 8 | 5 | 0.000000000 | -0.000000000 ✔
4 | 8 | 6 | 0.000000000 | 0.000000000 ✔
4 | 8 | 7 | 0.000000000 | 0.000000000 ✔
4 | 8 | 8 | 2348047.058823529 | 2348047.058823530 ✔
4 | 8 | 9 | 0.000000000 | 0.000000000 ✔
4 | 9 | 4 | 0.000000000 | 0.000000000 ✔
4 | 9 | 5 | 0.000000000 | 0.000000000 ✔
4 | 9 | 6 | 0.000000000 | 0.000000000 ✔
4 | 9 | 7 | 0.000000000 | 0.000000000 ✔
4 | 9 | 8 | 0.000000000 | 0.000000000 ✔
4 | 9 | 9 | 5462298.947368422 | 5462298.947368421 ✔
5 | 5 | 5 | 659781.818181818 | 659781.818181818 ✔
5 | 5 | 6 | 0.000000000 | -0.000000000 ✔
5 | 5 | 7 | 0.000000000 | 0.000000000 ✔
5 | 5 | 8 | 0.000000000 | 0.000000001 ✔
5 | 5 | 9 | 0.000000000 | 0.000000000 ✔
5 | 6 | 5 | 0.000000000 | -0.000000000 ✔
5 | 6 | 6 | 6141046.153846154 | 6141046.153846157 ✔
5 | 6 | 7 | 0.000000000 | 0.000000000 ✔
5 | 6 | 8 | 0.000000000 | 0.000000002 ✔
5 | 6 | 9 | 0.000000000 | 0.000000001 ✔
5 | 7 | 5 | 0.000000000 | 0.000000000 ✔
5 | 7 | 6 | 0.000000000 | 0.000000000 ✔
5 | 7 | 7 | 31933440.000000000 | 31933440.000000000 ✔
5 | 7 | 8 | 0.000000000 | 0.000000003 ✔
5 | 7 | 9 | 0.000000000 | 0.000000004 ✔
5 | 8 | 5 | 0.000000000 | 0.000000001 ✔
5 | 8 | 6 | 0.000000000 | 0.000000002 ✔
5 | 8 | 7 | 0.000000000 | 0.000000003 ✔
5 | 8 | 8 | 122098447.058823526 | 122098447.058823526 ✔
5 | 8 | 9 | 0.000000000 | -0.000000001 ✔
5 | 9 | 5 | 0.000000000 | 0.000000000 ✔
5 | 9 | 6 | 0.000000000 | 0.000000001 ✔
5 | 9 | 7 | 0.000000000 | 0.000000004 ✔
5 | 9 | 8 | 0.000000000 | -0.000000001 ✔
5 | 9 | 9 | 382360926.315789461 | 382360926.315789461 ✔
Normalization & Orthogonality of $Y_{lm}(\theta,\varphi)$
\[\int_0^{2\pi} \int_0^\pi Y_{lm}(\theta,\varphi)^* Y_{l'm'}(\theta,\varphi) \sin(\theta) ~\mathrm{d}\theta \mathrm{d}\varphi = \delta_{ll'} \delta_{mm'}\]
l₁ | l₂ | m₁ | m₂ | analytical | numerical
-- | -- | -- | -- | -------------- | --------------
0 | 0 | 0 | 0 | 1.000000000 | 1.000000000 ✔
0 | 1 | 0 | -1 | 0.000000000 | 0.000000000 ✔
0 | 1 | 0 | 0 | 0.000000000 | -0.000000000 ✔
0 | 1 | 0 | 1 | 0.000000000 | 0.000000000 ✔
0 | 2 | 0 | -2 | 0.000000000 | -0.000000000 ✔
0 | 2 | 0 | -1 | 0.000000000 | 0.000000000 ✔
0 | 2 | 0 | 0 | 0.000000000 | 0.000000000 ✔
0 | 2 | 0 | 1 | 0.000000000 | -0.000000000 ✔
0 | 2 | 0 | 2 | 0.000000000 | -0.000000000 ✔
1 | 0 | -1 | 0 | 0.000000000 | 0.000000000 ✔
1 | 0 | 0 | 0 | 0.000000000 | -0.000000000 ✔
1 | 0 | 1 | 0 | 0.000000000 | 0.000000000 ✔
1 | 1 | -1 | -1 | 1.000000000 | 1.000000000 ✔
1 | 1 | -1 | 0 | 0.000000000 | 0.000000000 ✔
1 | 1 | -1 | 1 | 0.000000000 | 0.000000000 ✔
1 | 1 | 0 | -1 | 0.000000000 | 0.000000000 ✔
1 | 1 | 0 | 0 | 1.000000000 | 1.000000000 ✔
1 | 1 | 0 | 1 | 0.000000000 | -0.000000000 ✔
1 | 1 | 1 | -1 | 0.000000000 | 0.000000000 ✔
1 | 1 | 1 | 0 | 0.000000000 | -0.000000000 ✔
1 | 1 | 1 | 1 | 1.000000000 | 1.000000000 ✔
1 | 2 | -1 | -2 | 0.000000000 | -0.000000000 ✔
1 | 2 | -1 | -1 | 0.000000000 | -0.000000000 ✔
1 | 2 | -1 | 0 | 0.000000000 | 0.000000000 ✔
1 | 2 | -1 | 1 | 0.000000000 | -0.000000000 ✔
1 | 2 | -1 | 2 | 0.000000000 | 0.000000000 ✔
1 | 2 | 0 | -2 | 0.000000000 | -0.000000000 ✔
1 | 2 | 0 | -1 | 0.000000000 | -0.000000000 ✔
1 | 2 | 0 | 0 | 0.000000000 | 0.000000000 ✔
1 | 2 | 0 | 1 | 0.000000000 | 0.000000000 ✔
1 | 2 | 0 | 2 | 0.000000000 | -0.000000000 ✔
1 | 2 | 1 | -2 | 0.000000000 | -0.000000000 ✔
1 | 2 | 1 | -1 | 0.000000000 | -0.000000000 ✔
1 | 2 | 1 | 0 | 0.000000000 | -0.000000000 ✔
1 | 2 | 1 | 1 | 0.000000000 | -0.000000000 ✔
1 | 2 | 1 | 2 | 0.000000000 | 0.000000000 ✔
2 | 0 | -2 | 0 | 0.000000000 | -0.000000000 ✔
2 | 0 | -1 | 0 | 0.000000000 | 0.000000000 ✔
2 | 0 | 0 | 0 | 0.000000000 | 0.000000000 ✔
2 | 0 | 1 | 0 | 0.000000000 | -0.000000000 ✔
2 | 0 | 2 | 0 | 0.000000000 | -0.000000000 ✔
2 | 1 | -2 | -1 | 0.000000000 | -0.000000000 ✔
2 | 1 | -2 | 0 | 0.000000000 | -0.000000000 ✔
2 | 1 | -2 | 1 | 0.000000000 | -0.000000000 ✔
2 | 1 | -1 | -1 | 0.000000000 | -0.000000000 ✔
2 | 1 | -1 | 0 | 0.000000000 | -0.000000000 ✔
2 | 1 | -1 | 1 | 0.000000000 | -0.000000000 ✔
2 | 1 | 0 | -1 | 0.000000000 | 0.000000000 ✔
2 | 1 | 0 | 0 | 0.000000000 | 0.000000000 ✔
2 | 1 | 0 | 1 | 0.000000000 | -0.000000000 ✔
2 | 1 | 1 | -1 | 0.000000000 | -0.000000000 ✔
2 | 1 | 1 | 0 | 0.000000000 | 0.000000000 ✔
2 | 1 | 1 | 1 | 0.000000000 | -0.000000000 ✔
2 | 1 | 2 | -1 | 0.000000000 | 0.000000000 ✔
2 | 1 | 2 | 0 | 0.000000000 | -0.000000000 ✔
2 | 1 | 2 | 1 | 0.000000000 | 0.000000000 ✔
2 | 2 | -2 | -2 | 1.000000000 | 1.000000000 ✔
2 | 2 | -2 | -1 | 0.000000000 | -0.000000000 ✔
2 | 2 | -2 | 0 | 0.000000000 | 0.000000000 ✔
2 | 2 | -2 | 1 | 0.000000000 | 0.000000000 ✔
2 | 2 | -2 | 2 | 0.000000000 | -0.000000000 ✔
2 | 2 | -1 | -2 | 0.000000000 | -0.000000000 ✔
2 | 2 | -1 | -1 | 1.000000000 | 1.000000000 ✔
2 | 2 | -1 | 0 | 0.000000000 | -0.000000000 ✔
2 | 2 | -1 | 1 | 0.000000000 | 0.000000000 ✔
2 | 2 | -1 | 2 | 0.000000000 | -0.000000000 ✔
2 | 2 | 0 | -2 | 0.000000000 | 0.000000000 ✔
2 | 2 | 0 | -1 | 0.000000000 | -0.000000000 ✔
2 | 2 | 0 | 0 | 1.000000000 | 1.000000000 ✔
2 | 2 | 0 | 1 | 0.000000000 | 0.000000000 ✔
2 | 2 | 0 | 2 | 0.000000000 | 0.000000000 ✔
2 | 2 | 1 | -2 | 0.000000000 | 0.000000000 ✔
2 | 2 | 1 | -1 | 0.000000000 | 0.000000000 ✔
2 | 2 | 1 | 0 | 0.000000000 | 0.000000000 ✔
2 | 2 | 1 | 1 | 1.000000000 | 1.000000000 ✔
2 | 2 | 1 | 2 | 0.000000000 | 0.000000000 ✔
2 | 2 | 2 | -2 | 0.000000000 | -0.000000000 ✔
2 | 2 | 2 | -1 | 0.000000000 | -0.000000000 ✔
2 | 2 | 2 | 0 | 0.000000000 | 0.000000000 ✔
2 | 2 | 2 | 1 | 0.000000000 | 0.000000000 ✔
2 | 2 | 2 | 2 | 1.000000000 | 1.000000000 ✔
Associated Laguerre Polynomials $L_n^{k}(x)$
\[ \begin{aligned} L_n^{k}(x) &= \frac{\mathrm{d}^k}{\mathrm{d}x^k} L_n(x) \\ &= \frac{\mathrm{d}^k}{\mathrm{d}x^k} \frac{1}{n!} \mathrm{e}^x \frac{\mathrm{d}^n}{\mathrm{d}x ^n} \left( \mathrm{e}^{-x} x^n \right) \\ &= \sum_{m=0}^{n-k} (-1)^{m+k} \frac{n!}{m!(m+k)!(n-m-k)!} x^m \\ &= (-1)^k L_{n-k}^{(k)}(x) \end{aligned}\]
$n=0, k=0:$ ✔
\[\begin{aligned} L_{0}^{0}(x) = e^{ - x} e^{x} &= 1 \\ &= 1 \\ &= 1 \end{aligned}\]
$n=1, k=0:$ ✔
\[\begin{aligned} L_{1}^{0}(x) = \frac{\mathrm{d}}{\mathrm{d}x} x e^{ - x} e^{x} &= 1 - x \\ &= 1 - x \\ &= 1 - x \end{aligned}\]
$n=1, k=1:$ ✔
\[\begin{aligned} L_{1}^{1}(x) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} x e^{ - x} e^{x} &= -1 \\ &= -1 \\ &= -1 \end{aligned}\]
$n=2, k=0:$ ✔
\[\begin{aligned} L_{2}^{0}(x) = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} x^{2} e^{ - x} e^{x} &= 1 - 2 x + \frac{1}{2} x^{2} \\ &= 1 - 2 x + \frac{1}{2} x^{2} \\ &= 1 - 2 x + \frac{1}{2} x^{2} \end{aligned}\]
$n=2, k=1:$ ✔
\[\begin{aligned} L_{2}^{1}(x) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} x^{2} e^{ - x} e^{x} &= -2 + x \\ &= -2 + x \\ &= -2 + x \end{aligned}\]
$n=2, k=2:$ ✔
\[\begin{aligned} L_{2}^{2}(x) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} x^{2} e^{ - x} e^{x} &= 1 \\ &= 1 \\ &= 1 \end{aligned}\]
$n=3, k=0:$ ✔
\[\begin{aligned} L_{3}^{0}(x) = \frac{1}{6} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} x^{3} e^{ - x} e^{x} &= 1 - 3 x + \frac{3}{2} x^{2} - \frac{1}{6} x^{3} \\ &= 1 - 3 x + \frac{3}{2} x^{2} - \frac{1}{6} x^{3} \\ &= 1 - 3 x + \frac{3}{2} x^{2} - \frac{1}{6} x^{3} \end{aligned}\]
$n=3, k=1:$ ✔
\[\begin{aligned} L_{3}^{1}(x) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{6} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} x^{3} e^{ - x} e^{x} &= -3 + 3 x - \frac{1}{2} x^{2} \\ &= -3 + 3 x - \frac{1}{2} x^{2} \\ &= -3 + 3 x - \frac{1}{2} x^{2} \end{aligned}\]
$n=3, k=2:$ ✔
\[\begin{aligned} L_{3}^{2}(x) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{6} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} x^{3} e^{ - x} e^{x} &= 3 - x \\ &= 3 - x \\ &= 3 - x \end{aligned}\]
$n=3, k=3:$ ✔
\[\begin{aligned} L_{3}^{3}(x) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{6} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} x^{3} e^{ - x} e^{x} &= -1 \\ &= -1 \\ &= -1 \end{aligned}\]
$n=4, k=0:$ ✔
\[\begin{aligned} L_{4}^{0}(x) = \frac{1}{24} e^{x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} x^{4} e^{ - x} &= 1 - 4 x + 3 x^{2} - \frac{2}{3} x^{3} + \frac{1}{24} x^{4} \\ &= 1 - 4 x + 3 x^{2} - \frac{2}{3} x^{3} + \frac{1}{24} x^{4} \\ &= 1 - 4 x + 3 x^{2} - \frac{2}{3} x^{3} + \frac{1}{24} x^{4} \end{aligned}\]
$n=4, k=1:$ ✔
\[\begin{aligned} L_{4}^{1}(x) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{24} e^{x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} x^{4} e^{ - x} &= -4 + 6 x - 2 x^{2} + \frac{1}{6} x^{3} \\ &= -4 + 6 x - 2 x^{2} + \frac{1}{6} x^{3} \\ &= -4 + 6 x - 2 x^{2} + \frac{1}{6} x^{3} \end{aligned}\]
$n=4, k=2:$ ✔
\[\begin{aligned} L_{4}^{2}(x) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{24} e^{x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} x^{4} e^{ - x} &= 6 - 4 x + \frac{1}{2} x^{2} \\ &= 6 - 4 x + \frac{1}{2} x^{2} \\ &= 6 - 4 x + \frac{1}{2} x^{2} \end{aligned}\]
$n=4, k=3:$ ✔
\[\begin{aligned} L_{4}^{3}(x) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{24} e^{x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} x^{4} e^{ - x} &= -4 + x \\ &= -4 + x \\ &= -4 + x \end{aligned}\]
$n=4, k=4:$ ✔
\[\begin{aligned} L_{4}^{4}(x) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{24} e^{x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} x^{4} e^{ - x} &= 1 \\ &= 1 \\ &= 1 \end{aligned}\]
Normalization & Orthogonality of $L_n^{k}(x)$
\[\int_{0}^{\infty} \mathrm{e}^{-x} x^k L_i^k(x) L_j^k(x) \mathrm{d}x = \frac{i!}{(i-k)!} \delta_{ij}\]
Replace $n+k$ with $n$ for the definition of Wolfram MathWorld.
i | j | k | analytical | numerical
-- | -- | -- | -------------- | --------------
0 | 0 | 0 | 1.000000000 | 1.000000000 ✔
0 | 1 | 0 | 0.000000000 | 0.000000000 ✔
0 | 2 | 0 | 0.000000000 | 0.000000000 ✔
0 | 3 | 0 | 0.000000000 | 0.000000000 ✔
0 | 4 | 0 | 0.000000000 | 0.000000000 ✔
0 | 5 | 0 | 0.000000000 | -0.000000000 ✔
0 | 6 | 0 | 0.000000000 | -0.000000000 ✔
0 | 7 | 0 | 0.000000000 | 0.000000000 ✔
1 | 0 | 0 | 0.000000000 | 0.000000000 ✔
1 | 1 | 0 | 1.000000000 | 1.000000000 ✔
1 | 1 | 1 | 1.000000000 | 1.000000000 ✔
1 | 2 | 0 | 0.000000000 | -0.000000000 ✔
1 | 2 | 1 | 0.000000000 | 0.000000000 ✔
1 | 3 | 0 | 0.000000000 | -0.000000000 ✔
1 | 3 | 1 | 0.000000000 | -0.000000000 ✔
1 | 4 | 0 | 0.000000000 | -0.000000000 ✔
1 | 4 | 1 | 0.000000000 | 0.000000000 ✔
1 | 5 | 0 | 0.000000000 | 0.000000000 ✔
1 | 5 | 1 | 0.000000000 | -0.000000000 ✔
1 | 6 | 0 | 0.000000000 | 0.000000000 ✔
1 | 6 | 1 | 0.000000000 | -0.000000000 ✔
1 | 7 | 0 | 0.000000000 | -0.000000000 ✔
1 | 7 | 1 | 0.000000000 | 0.000000000 ✔
2 | 0 | 0 | 0.000000000 | 0.000000000 ✔
2 | 1 | 0 | 0.000000000 | 0.000000000 ✔
2 | 1 | 1 | 0.000000000 | 0.000000000 ✔
2 | 2 | 0 | 1.000000000 | 1.000000000 ✔
2 | 2 | 1 | 2.000000000 | 2.000000000 ✔
2 | 2 | 2 | 2.000000000 | 2.000000000 ✔
2 | 3 | 0 | 0.000000000 | 0.000000000 ✔
2 | 3 | 1 | 0.000000000 | -0.000000000 ✔
2 | 3 | 2 | 0.000000000 | -0.000000000 ✔
2 | 4 | 0 | 0.000000000 | 0.000000000 ✔
2 | 4 | 1 | 0.000000000 | -0.000000000 ✔
2 | 4 | 2 | 0.000000000 | -0.000000000 ✔
2 | 5 | 0 | 0.000000000 | 0.000000000 ✔
2 | 5 | 1 | 0.000000000 | 0.000000000 ✔
2 | 5 | 2 | 0.000000000 | 0.000000000 ✔
2 | 6 | 0 | 0.000000000 | -0.000000000 ✔
2 | 6 | 1 | 0.000000000 | 0.000000000 ✔
2 | 6 | 2 | 0.000000000 | -0.000000000 ✔
2 | 7 | 0 | 0.000000000 | 0.000000000 ✔
2 | 7 | 1 | 0.000000000 | -0.000000000 ✔
2 | 7 | 2 | 0.000000000 | 0.000000000 ✔
3 | 0 | 0 | 0.000000000 | 0.000000000 ✔
3 | 1 | 0 | 0.000000000 | -0.000000000 ✔
3 | 1 | 1 | 0.000000000 | -0.000000000 ✔
3 | 2 | 0 | 0.000000000 | 0.000000000 ✔
3 | 2 | 1 | 0.000000000 | -0.000000000 ✔
3 | 2 | 2 | 0.000000000 | -0.000000000 ✔
3 | 3 | 0 | 1.000000000 | 1.000000000 ✔
3 | 3 | 1 | 3.000000000 | 3.000000000 ✔
3 | 3 | 2 | 6.000000000 | 6.000000000 ✔
3 | 3 | 3 | 6.000000000 | 6.000000000 ✔
3 | 4 | 0 | 0.000000000 | 0.000000000 ✔
3 | 4 | 1 | 0.000000000 | 0.000000000 ✔
3 | 4 | 2 | 0.000000000 | -0.000000000 ✔
3 | 4 | 3 | 0.000000000 | -0.000000000 ✔
3 | 5 | 0 | 0.000000000 | -0.000000000 ✔
3 | 5 | 1 | 0.000000000 | -0.000000000 ✔
3 | 5 | 2 | 0.000000000 | -0.000000000 ✔
3 | 5 | 3 | 0.000000000 | 0.000000000 ✔
3 | 6 | 0 | 0.000000000 | 0.000000000 ✔
3 | 6 | 1 | 0.000000000 | -0.000000000 ✔
3 | 6 | 2 | 0.000000000 | 0.000000000 ✔
3 | 6 | 3 | 0.000000000 | 0.000000000 ✔
3 | 7 | 0 | 0.000000000 | -0.000000000 ✔
3 | 7 | 1 | 0.000000000 | 0.000000000 ✔
3 | 7 | 2 | 0.000000000 | -0.000000000 ✔
3 | 7 | 3 | 0.000000000 | -0.000000000 ✔
4 | 0 | 0 | 0.000000000 | 0.000000000 ✔
4 | 1 | 0 | 0.000000000 | -0.000000000 ✔
4 | 1 | 1 | 0.000000000 | 0.000000000 ✔
4 | 2 | 0 | 0.000000000 | 0.000000000 ✔
4 | 2 | 1 | 0.000000000 | -0.000000000 ✔
4 | 2 | 2 | 0.000000000 | -0.000000000 ✔
4 | 3 | 0 | 0.000000000 | 0.000000000 ✔
4 | 3 | 1 | 0.000000000 | 0.000000000 ✔
4 | 3 | 2 | 0.000000000 | 0.000000000 ✔
4 | 3 | 3 | 0.000000000 | -0.000000000 ✔
4 | 4 | 0 | 1.000000000 | 1.000000000 ✔
4 | 4 | 1 | 4.000000000 | 4.000000000 ✔
4 | 4 | 2 | 12.000000000 | 12.000000000 ✔
4 | 4 | 3 | 24.000000000 | 24.000000000 ✔
4 | 4 | 4 | 24.000000000 | 24.000000000 ✔
4 | 5 | 0 | 0.000000000 | 0.000000000 ✔
4 | 5 | 1 | 0.000000000 | 0.000000000 ✔
4 | 5 | 2 | 0.000000000 | 0.000000000 ✔
4 | 5 | 3 | 0.000000000 | 0.000000000 ✔
4 | 5 | 4 | 0.000000000 | -0.000000000 ✔
4 | 6 | 0 | 0.000000000 | -0.000000000 ✔
4 | 6 | 1 | 0.000000000 | 0.000000000 ✔
4 | 6 | 2 | 0.000000000 | -0.000000000 ✔
4 | 6 | 3 | 0.000000000 | -0.000000000 ✔
4 | 6 | 4 | 0.000000000 | 0.000000000 ✔
4 | 7 | 0 | 0.000000000 | 0.000000000 ✔
4 | 7 | 1 | 0.000000000 | -0.000000000 ✔
4 | 7 | 2 | 0.000000000 | 0.000000000 ✔
4 | 7 | 3 | 0.000000000 | 0.000000000 ✔
4 | 7 | 4 | 0.000000000 | 0.000000000 ✔
5 | 0 | 0 | 0.000000000 | -0.000000000 ✔
5 | 1 | 0 | 0.000000000 | 0.000000000 ✔
5 | 1 | 1 | 0.000000000 | -0.000000000 ✔
5 | 2 | 0 | 0.000000000 | 0.000000000 ✔
5 | 2 | 1 | 0.000000000 | 0.000000000 ✔
5 | 2 | 2 | 0.000000000 | 0.000000000 ✔
5 | 3 | 0 | 0.000000000 | -0.000000000 ✔
5 | 3 | 1 | 0.000000000 | -0.000000000 ✔
5 | 3 | 2 | 0.000000000 | -0.000000000 ✔
5 | 3 | 3 | 0.000000000 | 0.000000000 ✔
5 | 4 | 0 | 0.000000000 | 0.000000000 ✔
5 | 4 | 1 | 0.000000000 | 0.000000000 ✔
5 | 4 | 2 | 0.000000000 | 0.000000000 ✔
5 | 4 | 3 | 0.000000000 | 0.000000000 ✔
5 | 4 | 4 | 0.000000000 | -0.000000000 ✔
5 | 5 | 0 | 1.000000000 | 1.000000000 ✔
5 | 5 | 1 | 5.000000000 | 5.000000000 ✔
5 | 5 | 2 | 20.000000000 | 20.000000000 ✔
5 | 5 | 3 | 60.000000000 | 60.000000000 ✔
5 | 5 | 4 | 120.000000000 | 120.000000000 ✔
5 | 5 | 5 | 120.000000000 | 120.000000000 ✔
5 | 6 | 0 | 0.000000000 | 0.000000000 ✔
5 | 6 | 1 | 0.000000000 | -0.000000000 ✔
5 | 6 | 2 | 0.000000000 | 0.000000000 ✔
5 | 6 | 3 | 0.000000000 | 0.000000000 ✔
5 | 6 | 4 | 0.000000000 | 0.000000000 ✔
5 | 6 | 5 | 0.000000000 | 0.000000000 ✔
5 | 7 | 0 | 0.000000000 | -0.000000000 ✔
5 | 7 | 1 | 0.000000000 | -0.000000000 ✔
5 | 7 | 2 | 0.000000000 | -0.000000000 ✔
5 | 7 | 3 | 0.000000000 | -0.000000000 ✔
5 | 7 | 4 | 0.000000000 | -0.000000000 ✔
5 | 7 | 5 | 0.000000000 | -0.000000000 ✔
6 | 0 | 0 | 0.000000000 | -0.000000000 ✔
6 | 1 | 0 | 0.000000000 | 0.000000000 ✔
6 | 1 | 1 | 0.000000000 | -0.000000000 ✔
6 | 2 | 0 | 0.000000000 | -0.000000000 ✔
6 | 2 | 1 | 0.000000000 | 0.000000000 ✔
6 | 2 | 2 | 0.000000000 | -0.000000000 ✔
6 | 3 | 0 | 0.000000000 | 0.000000000 ✔
6 | 3 | 1 | 0.000000000 | -0.000000000 ✔
6 | 3 | 2 | 0.000000000 | 0.000000000 ✔
6 | 3 | 3 | 0.000000000 | 0.000000000 ✔
6 | 4 | 0 | 0.000000000 | -0.000000000 ✔
6 | 4 | 1 | 0.000000000 | 0.000000000 ✔
6 | 4 | 2 | 0.000000000 | -0.000000000 ✔
6 | 4 | 3 | 0.000000000 | -0.000000000 ✔
6 | 4 | 4 | 0.000000000 | 0.000000000 ✔
6 | 5 | 0 | 0.000000000 | 0.000000000 ✔
6 | 5 | 1 | 0.000000000 | -0.000000000 ✔
6 | 5 | 2 | 0.000000000 | 0.000000000 ✔
6 | 5 | 3 | 0.000000000 | 0.000000000 ✔
6 | 5 | 4 | 0.000000000 | 0.000000000 ✔
6 | 5 | 5 | 0.000000000 | 0.000000000 ✔
6 | 6 | 0 | 1.000000000 | 1.000000000 ✔
6 | 6 | 1 | 6.000000000 | 6.000000000 ✔
6 | 6 | 2 | 30.000000000 | 30.000000000 ✔
6 | 6 | 3 | 120.000000000 | 120.000000000 ✔
6 | 6 | 4 | 360.000000000 | 360.000000000 ✔
6 | 6 | 5 | 720.000000000 | 720.000000000 ✔
6 | 6 | 6 | 720.000000000 | 720.000000000 ✔
6 | 7 | 0 | 0.000000000 | -0.000000000 ✔
6 | 7 | 1 | 0.000000000 | 0.000000000 ✔
6 | 7 | 2 | 0.000000000 | -0.000000000 ✔
6 | 7 | 3 | 0.000000000 | 0.000000000 ✔
6 | 7 | 4 | 0.000000000 | 0.000000000 ✔
6 | 7 | 5 | 0.000000000 | -0.000000000 ✔
6 | 7 | 6 | 0.000000000 | 0.000000000 ✔
7 | 0 | 0 | 0.000000000 | 0.000000000 ✔
7 | 1 | 0 | 0.000000000 | -0.000000000 ✔
7 | 1 | 1 | 0.000000000 | 0.000000000 ✔
7 | 2 | 0 | 0.000000000 | 0.000000000 ✔
7 | 2 | 1 | 0.000000000 | -0.000000000 ✔
7 | 2 | 2 | 0.000000000 | 0.000000000 ✔
7 | 3 | 0 | 0.000000000 | -0.000000000 ✔
7 | 3 | 1 | 0.000000000 | 0.000000000 ✔
7 | 3 | 2 | 0.000000000 | -0.000000000 ✔
7 | 3 | 3 | 0.000000000 | -0.000000000 ✔
7 | 4 | 0 | 0.000000000 | 0.000000000 ✔
7 | 4 | 1 | 0.000000000 | -0.000000000 ✔
7 | 4 | 2 | 0.000000000 | 0.000000000 ✔
7 | 4 | 3 | 0.000000000 | 0.000000000 ✔
7 | 4 | 4 | 0.000000000 | 0.000000000 ✔
7 | 5 | 0 | 0.000000000 | -0.000000000 ✔
7 | 5 | 1 | 0.000000000 | -0.000000000 ✔
7 | 5 | 2 | 0.000000000 | -0.000000000 ✔
7 | 5 | 3 | 0.000000000 | -0.000000000 ✔
7 | 5 | 4 | 0.000000000 | -0.000000000 ✔
7 | 5 | 5 | 0.000000000 | -0.000000000 ✔
7 | 6 | 0 | 0.000000000 | -0.000000000 ✔
7 | 6 | 1 | 0.000000000 | 0.000000000 ✔
7 | 6 | 2 | 0.000000000 | -0.000000000 ✔
7 | 6 | 3 | 0.000000000 | 0.000000000 ✔
7 | 6 | 4 | 0.000000000 | 0.000000000 ✔
7 | 6 | 5 | 0.000000000 | 0.000000000 ✔
7 | 6 | 6 | 0.000000000 | 0.000000000 ✔
7 | 7 | 0 | 1.000000000 | 1.000000000 ✔
7 | 7 | 1 | 7.000000000 | 7.000000000 ✔
7 | 7 | 2 | 42.000000000 | 42.000000000 ✔
7 | 7 | 3 | 210.000000000 | 210.000000000 ✔
7 | 7 | 4 | 840.000000000 | 840.000000000 ✔
7 | 7 | 5 | 2520.000000000 | 2520.000000000 ✔
7 | 7 | 6 | 5040.000000000 | 5040.000000000 ✔
7 | 7 | 7 | 5040.000000000 | 5040.000000000 ✔
Normalization of $R_{nl}(r)$
\[\int |R_{nl}(r)|^2 r^2 \mathrm{d}r = 1\]
n | l | analytical | numerical
-- | -- | -------------- | --------------
1 | 0 | 1.000000000 | 1.000000000 ✔
2 | 0 | 1.000000000 | 1.000000000 ✔
2 | 1 | 1.000000000 | 1.000000000 ✔
3 | 0 | 1.000000000 | 1.000000000 ✔
3 | 1 | 1.000000000 | 1.000000000 ✔
3 | 2 | 1.000000000 | 1.000000000 ✔
4 | 0 | 1.000000000 | 1.000000000 ✔
4 | 1 | 1.000000000 | 1.000000000 ✔
4 | 2 | 1.000000000 | 1.000000000 ✔
4 | 3 | 1.000000000 | 1.000000000 ✔
5 | 0 | 1.000000000 | 1.000000000 ✔
5 | 1 | 1.000000000 | 1.000000000 ✔
5 | 2 | 1.000000000 | 1.000000000 ✔
5 | 3 | 1.000000000 | 1.000000000 ✔
5 | 4 | 1.000000000 | 1.000000000 ✔
6 | 0 | 1.000000000 | 1.000000000 ✔
6 | 1 | 1.000000000 | 1.000000000 ✔
6 | 2 | 1.000000000 | 1.000000000 ✔
6 | 3 | 1.000000000 | 1.000000000 ✔
6 | 4 | 1.000000000 | 1.000000000 ✔
6 | 5 | 1.000000000 | 1.000000000 ✔
7 | 0 | 1.000000000 | 1.000000000 ✔
7 | 1 | 1.000000000 | 1.000000000 ✔
7 | 2 | 1.000000000 | 1.000000000 ✔
7 | 3 | 1.000000000 | 1.000000000 ✔
7 | 4 | 1.000000000 | 1.000000000 ✔
7 | 5 | 1.000000000 | 1.000000000 ✔
7 | 6 | 1.000000000 | 1.000000000 ✔
8 | 0 | 1.000000000 | 1.000000000 ✔
8 | 1 | 1.000000000 | 1.000000000 ✔
8 | 2 | 1.000000000 | 1.000000000 ✔
8 | 3 | 1.000000000 | 1.000000000 ✔
8 | 4 | 1.000000000 | 1.000000000 ✔
8 | 5 | 1.000000000 | 1.000000000 ✔
8 | 6 | 1.000000000 | 1.000000000 ✔
8 | 7 | 1.000000000 | 1.000000000 ✔
9 | 0 | 1.000000000 | 1.000000000 ✔
9 | 1 | 1.000000000 | 1.000000000 ✔
9 | 2 | 1.000000000 | 1.000000000 ✔
9 | 3 | 1.000000000 | 1.000000000 ✔
9 | 4 | 1.000000000 | 1.000000000 ✔
9 | 5 | 1.000000000 | 1.000000000 ✔
9 | 6 | 1.000000000 | 1.000000000 ✔
9 | 7 | 1.000000000 | 1.000000000 ✔
9 | 8 | 1.000000000 | 1.000000000 ✔
Expected Value of $r$
\[\langle r \rangle = \int r |R_{nl}(r)|^2 r^2 \mathrm{d}r = \frac{a_\mu}{2Z} \left[ 3n^2 - l(l+1) \right] \\ a_\mu = a_0 \frac{m_\mathrm{e}}{\mu} \\ \frac{1}{\mu} = \frac{1}{m_\mathrm{e}} + \frac{1}{m_\mathrm{p}}\]
Reference:
- 高柳和夫『朝倉物理学大系 11 原子分子物理学』(2000, 朝倉書店) pp.11-22
- Quantum Mechanics for Engineers by Leon van Dommelen
Antique.CoulombTwoBody(z₁=-1, z₂=1, m₁=1.0, m₂=1.0, mₑ=1.0, a₀=1.0, Eₕ=1.0, ħ=1.0)
n | l | analytical | numerical
-- | -- | -------------- | --------------
1 | 0 | 3.000000000 | 3.000000000 ✔
2 | 0 | 12.000000000 | 12.000000000 ✔
2 | 1 | 10.000000000 | 10.000000000 ✔
3 | 0 | 27.000000000 | 27.000000000 ✔
3 | 1 | 25.000000000 | 25.000000000 ✔
3 | 2 | 21.000000000 | 21.000000000 ✔
4 | 0 | 48.000000000 | 48.000000000 ✔
4 | 1 | 46.000000000 | 46.000000000 ✔
4 | 2 | 42.000000000 | 42.000000000 ✔
4 | 3 | 36.000000000 | 36.000000000 ✔
5 | 0 | 75.000000000 | 75.000000000 ✔
5 | 1 | 73.000000000 | 73.000000000 ✔
5 | 2 | 69.000000000 | 69.000000000 ✔
5 | 3 | 63.000000000 | 63.000000000 ✔
5 | 4 | 55.000000000 | 55.000000000 ✔
6 | 0 | 108.000000000 | 108.000000000 ✔
6 | 1 | 106.000000000 | 106.000000000 ✔
6 | 2 | 102.000000000 | 102.000000000 ✔
6 | 3 | 96.000000000 | 96.000000000 ✔
6 | 4 | 88.000000000 | 88.000000000 ✔
6 | 5 | 78.000000000 | 78.000000000 ✔
7 | 0 | 147.000000000 | 147.000000000 ✔
7 | 1 | 145.000000000 | 145.000000000 ✔
7 | 2 | 141.000000000 | 141.000000000 ✔
7 | 3 | 135.000000000 | 135.000000000 ✔
7 | 4 | 127.000000000 | 127.000000000 ✔
7 | 5 | 117.000000000 | 117.000000000 ✔
7 | 6 | 105.000000000 | 105.000000000 ✔
8 | 0 | 192.000000000 | 192.000000000 ✔
8 | 1 | 190.000000000 | 190.000000000 ✔
8 | 2 | 186.000000000 | 186.000000000 ✔
8 | 3 | 180.000000000 | 180.000000000 ✔
8 | 4 | 172.000000000 | 172.000000000 ✔
8 | 5 | 162.000000000 | 162.000000000 ✔
8 | 6 | 150.000000000 | 150.000000000 ✔
8 | 7 | 136.000000000 | 136.000000000 ✔
9 | 0 | 243.000000000 | 243.000000000 ✔
9 | 1 | 241.000000000 | 241.000000000 ✔
9 | 2 | 237.000000000 | 237.000000000 ✔
9 | 3 | 231.000000000 | 231.000000000 ✔
9 | 4 | 223.000000000 | 223.000000000 ✔
9 | 5 | 213.000000000 | 213.000000000 ✔
9 | 6 | 201.000000000 | 201.000000000 ✔
9 | 7 | 187.000000000 | 187.000000000 ✔
9 | 8 | 171.000000000 | 171.000000000 ✔
Antique.CoulombTwoBody(z₁=-1, z₂=1, m₁=1.0, m₂=206.768283, mₑ=1.0, a₀=1.0, Eₕ=1.0, ħ=1.0)
n | l | analytical | numerical
-- | -- | -------------- | --------------
1 | 0 | 1.507254498 | 1.507254498 ✔
2 | 0 | 6.029017990 | 6.029017990 ✔
2 | 1 | 5.024181658 | 5.024181658 ✔
3 | 0 | 13.565290478 | 13.565290478 ✔
3 | 1 | 12.560454146 | 12.560454146 ✔
3 | 2 | 10.550781483 | 10.550781483 ✔
4 | 0 | 24.116071961 | 24.116071961 ✔
4 | 1 | 23.111235629 | 23.111235629 ✔
4 | 2 | 21.101562966 | 21.101562966 ✔
4 | 3 | 18.087053970 | 18.087053970 ✔
5 | 0 | 37.681362438 | 37.681362438 ✔
5 | 1 | 36.676526107 | 36.676526107 ✔
5 | 2 | 34.666853443 | 34.666853443 ✔
5 | 3 | 31.652344448 | 31.652344448 ✔
5 | 4 | 27.632999122 | 27.632999122 ✔
6 | 0 | 54.261161911 | 54.261161911 ✔
6 | 1 | 53.256325580 | 53.256325580 ✔
6 | 2 | 51.246652916 | 51.246652916 ✔
6 | 3 | 48.232143921 | 48.232143921 ✔
6 | 4 | 44.212798594 | 44.212798594 ✔
6 | 5 | 39.188616936 | 39.188616936 ✔
7 | 0 | 73.855470379 | 73.855470379 ✔
7 | 1 | 72.850634048 | 72.850634048 ✔
7 | 2 | 70.840961384 | 70.840961384 ✔
7 | 3 | 67.826452389 | 67.826452389 ✔
7 | 4 | 63.807107062 | 63.807107062 ✔
7 | 5 | 58.782925404 | 58.782925404 ✔
7 | 6 | 52.753907414 | 52.753907414 ✔
8 | 0 | 96.464287842 | 96.464287842 ✔
8 | 1 | 95.459451511 | 95.459451511 ✔
8 | 2 | 93.449778847 | 93.449778847 ✔
8 | 3 | 90.435269852 | 90.435269852 ✔
8 | 4 | 86.415924526 | 86.415924526 ✔
8 | 5 | 81.391742867 | 81.391742867 ✔
8 | 6 | 75.362724877 | 75.362724877 ✔
8 | 7 | 68.328870555 | 68.328870555 ✔
9 | 0 | 122.087614301 | 122.087614301 ✔
9 | 1 | 121.082777969 | 121.082777969 ✔
9 | 2 | 119.073105306 | 119.073105306 ✔
9 | 3 | 116.058596310 | 116.058596310 ✔
9 | 4 | 112.039250984 | 112.039250984 ✔
9 | 5 | 107.015069325 | 107.015069325 ✔
9 | 6 | 100.986051335 | 100.986051335 ✔
9 | 7 | 93.952197013 | 93.952197013 ✔
9 | 8 | 85.913506360 | 85.913506360 ✔
Antique.CoulombTwoBody(z₁=-1, z₂=1, m₁=1.0, m₂=1836.15267343, mₑ=1.0, a₀=1.0, Eₕ=1.0, ħ=1.0)
n | l | analytical | numerical
-- | -- | -------------- | --------------
1 | 0 | 1.500816926 | 1.500816926 ✔
2 | 0 | 6.003267702 | 6.003267702 ✔
2 | 1 | 5.002723085 | 5.002723085 ✔
3 | 0 | 13.507352330 | 13.507352330 ✔
3 | 1 | 12.506807713 | 12.506807713 ✔
3 | 2 | 10.505718479 | 10.505718479 ✔
4 | 0 | 24.013070809 | 24.013070809 ✔
4 | 1 | 23.012526191 | 23.012526191 ✔
4 | 2 | 21.011436957 | 21.011436957 ✔
4 | 3 | 18.009803106 | 18.009803106 ✔
5 | 0 | 37.520423138 | 37.520423138 ✔
5 | 1 | 36.519878521 | 36.519878521 ✔
5 | 2 | 34.518789287 | 34.518789287 ✔
5 | 3 | 31.517155436 | 31.517155436 ✔
5 | 4 | 27.514976968 | 27.514976968 ✔
6 | 0 | 54.029409319 | 54.029409319 ✔
6 | 1 | 53.028864702 | 53.028864702 ✔
6 | 2 | 51.027775468 | 51.027775468 ✔
6 | 3 | 48.026141617 | 48.026141617 ✔
6 | 4 | 44.023963149 | 44.023963149 ✔
6 | 5 | 39.021240064 | 39.021240064 ✔
7 | 0 | 73.540029351 | 73.540029351 ✔
7 | 1 | 72.539484734 | 72.539484734 ✔
7 | 2 | 70.538395500 | 70.538395500 ✔
7 | 3 | 67.536761649 | 67.536761649 ✔
7 | 4 | 63.534583181 | 63.534583181 ✔
7 | 5 | 58.531860096 | 58.531860096 ✔
7 | 6 | 52.528592394 | 52.528592394 ✔
8 | 0 | 96.052283234 | 96.052283234 ✔
8 | 1 | 95.051738617 | 95.051738617 ✔
8 | 2 | 93.050649383 | 93.050649383 ✔
8 | 3 | 90.049015532 | 90.049015532 ✔
8 | 4 | 86.046837064 | 86.046837064 ✔
8 | 5 | 81.044113979 | 81.044113979 ✔
8 | 6 | 75.040846277 | 75.040846277 ✔
8 | 7 | 68.037033957 | 68.037033957 ✔
9 | 0 | 121.566170968 | 121.566170968 ✔
9 | 1 | 120.565626351 | 120.565626351 ✔
9 | 2 | 118.564537117 | 118.564537117 ✔
9 | 3 | 115.562903266 | 115.562903266 ✔
9 | 4 | 111.560724798 | 111.560724798 ✔
9 | 5 | 106.558001713 | 106.558001713 ✔
9 | 6 | 100.554734011 | 100.554734011 ✔
9 | 7 | 93.550921692 | 93.550921692 ✔
9 | 8 | 85.546564755 | 85.546564755 ✔
Antique.CoulombTwoBody(z₁=-1, z₂=1, m₁=1.0, m₂=Inf, mₑ=1.0, a₀=1.0, Eₕ=1.0, ħ=1.0)
n | l | analytical | numerical
-- | -- | -------------- | --------------
1 | 0 | 1.500000000 | 1.500000000 ✔
2 | 0 | 6.000000000 | 6.000000000 ✔
2 | 1 | 5.000000000 | 5.000000000 ✔
3 | 0 | 13.500000000 | 13.500000000 ✔
3 | 1 | 12.500000000 | 12.500000000 ✔
3 | 2 | 10.500000000 | 10.500000000 ✔
4 | 0 | 24.000000000 | 24.000000000 ✔
4 | 1 | 23.000000000 | 23.000000000 ✔
4 | 2 | 21.000000000 | 21.000000000 ✔
4 | 3 | 18.000000000 | 18.000000000 ✔
5 | 0 | 37.500000000 | 37.500000000 ✔
5 | 1 | 36.500000000 | 36.500000000 ✔
5 | 2 | 34.500000000 | 34.500000000 ✔
5 | 3 | 31.500000000 | 31.500000000 ✔
5 | 4 | 27.500000000 | 27.500000000 ✔
6 | 0 | 54.000000000 | 54.000000000 ✔
6 | 1 | 53.000000000 | 53.000000000 ✔
6 | 2 | 51.000000000 | 51.000000000 ✔
6 | 3 | 48.000000000 | 48.000000000 ✔
6 | 4 | 44.000000000 | 44.000000000 ✔
6 | 5 | 39.000000000 | 39.000000000 ✔
7 | 0 | 73.500000000 | 73.500000000 ✔
7 | 1 | 72.500000000 | 72.500000000 ✔
7 | 2 | 70.500000000 | 70.500000000 ✔
7 | 3 | 67.500000000 | 67.500000000 ✔
7 | 4 | 63.500000000 | 63.500000000 ✔
7 | 5 | 58.500000000 | 58.500000000 ✔
7 | 6 | 52.500000000 | 52.500000000 ✔
8 | 0 | 96.000000000 | 96.000000000 ✔
8 | 1 | 95.000000000 | 95.000000000 ✔
8 | 2 | 93.000000000 | 93.000000000 ✔
8 | 3 | 90.000000000 | 90.000000000 ✔
8 | 4 | 86.000000000 | 86.000000000 ✔
8 | 5 | 81.000000000 | 81.000000000 ✔
8 | 6 | 75.000000000 | 75.000000000 ✔
8 | 7 | 68.000000000 | 68.000000000 ✔
9 | 0 | 121.500000000 | 121.500000000 ✔
9 | 1 | 120.500000000 | 120.500000000 ✔
9 | 2 | 118.500000000 | 118.500000000 ✔
9 | 3 | 115.500000000 | 115.500000000 ✔
9 | 4 | 111.500000000 | 111.500000000 ✔
9 | 5 | 106.500000000 | 106.500000000 ✔
9 | 6 | 100.500000000 | 100.500000000 ✔
9 | 7 | 93.500000000 | 93.500000000 ✔
9 | 8 | 85.500000000 | 85.500000000 ✔
Antique.CoulombTwoBody(z₁=-1, z₂=1, m₁=206.768283, m₂=1836.15267343, mₑ=1.0, a₀=1.0, Eₕ=1.0, ħ=1.0)
n | l | analytical | numerical
-- | -- | -------------- | --------------
1 | 0 | 0.008071423 | 0.008071423 ✔
2 | 0 | 0.032285692 | 0.032285692 ✔
2 | 1 | 0.026904744 | 0.026904744 ✔
3 | 0 | 0.072642808 | 0.072642808 ✔
3 | 1 | 0.067261859 | 0.067261859 ✔
3 | 2 | 0.056499961 | 0.056499961 ✔
4 | 0 | 0.129142769 | 0.129142769 ✔
4 | 1 | 0.123761820 | 0.123761820 ✔
4 | 2 | 0.112999923 | 0.112999923 ✔
4 | 3 | 0.096857077 | 0.096857077 ✔
5 | 0 | 0.201785577 | 0.201785577 ✔
5 | 1 | 0.196404628 | 0.196404628 ✔
5 | 2 | 0.185642731 | 0.185642731 ✔
5 | 3 | 0.169499884 | 0.169499884 ✔
5 | 4 | 0.147976090 | 0.147976090 ✔
6 | 0 | 0.290571231 | 0.290571231 ✔
6 | 1 | 0.285190282 | 0.285190282 ✔
6 | 2 | 0.274428384 | 0.274428384 ✔
6 | 3 | 0.258285538 | 0.258285538 ✔
6 | 4 | 0.236761743 | 0.236761743 ✔
6 | 5 | 0.209857000 | 0.209857000 ✔
7 | 0 | 0.395499730 | 0.395499730 ✔
7 | 1 | 0.390118782 | 0.390118782 ✔
7 | 2 | 0.379356884 | 0.379356884 ✔
7 | 3 | 0.363214038 | 0.363214038 ✔
7 | 4 | 0.341690243 | 0.341690243 ✔
7 | 5 | 0.314785500 | 0.314785500 ✔
7 | 6 | 0.282499807 | 0.282499807 ✔
8 | 0 | 0.516571077 | 0.516571077 ✔
8 | 1 | 0.511190128 | 0.511190128 ✔
8 | 2 | 0.500428230 | 0.500428230 ✔
8 | 3 | 0.484285384 | 0.484285384 ✔
8 | 4 | 0.462761589 | 0.462761589 ✔
8 | 5 | 0.435856846 | 0.435856846 ✔
8 | 6 | 0.403571154 | 0.403571154 ✔
8 | 7 | 0.365904513 | 0.365904513 ✔
9 | 0 | 0.653785269 | 0.653785269 ✔
9 | 1 | 0.648404320 | 0.648404320 ✔
9 | 2 | 0.637642423 | 0.637642423 ✔
9 | 3 | 0.621499576 | 0.621499576 ✔
9 | 4 | 0.599975782 | 0.599975782 ✔
9 | 5 | 0.573071038 | 0.573071038 ✔
9 | 6 | 0.540785346 | 0.540785346 ✔
9 | 7 | 0.503118705 | 0.503118705 ✔
9 | 8 | 0.460071115 | 0.460071115 ✔
Antique.CoulombTwoBody(z₁=-1, z₂=2, m₁=206.768283, m₂=7294.29954142, mₑ=1.0, a₀=1.0, Eₕ=1.0, ħ=1.0)
n | l | analytical | numerical
-- | -- | -------------- | --------------
1 | 0 | 0.003730069 | 0.003730069 ✔
2 | 0 | 0.014920275 | 0.014920275 ✔
2 | 1 | 0.012433563 | 0.012433563 ✔
3 | 0 | 0.033570619 | 0.033570619 ✔
3 | 1 | 0.031083907 | 0.031083907 ✔
3 | 2 | 0.026110481 | 0.026110481 ✔
4 | 0 | 0.059681101 | 0.059681101 ✔
4 | 1 | 0.057194388 | 0.057194388 ✔
4 | 2 | 0.052220963 | 0.052220963 ✔
4 | 3 | 0.044760825 | 0.044760825 ✔
5 | 0 | 0.093251720 | 0.093251720 ✔
5 | 1 | 0.090765007 | 0.090765007 ✔
5 | 2 | 0.085791582 | 0.085791582 ✔
5 | 3 | 0.078331444 | 0.078331444 ✔
5 | 4 | 0.068384594 | 0.068384594 ✔
6 | 0 | 0.134282476 | 0.134282476 ✔
6 | 1 | 0.131795764 | 0.131795764 ✔
6 | 2 | 0.126822339 | 0.126822339 ✔
6 | 3 | 0.119362201 | 0.119362201 ✔
6 | 4 | 0.109415351 | 0.109415351 ✔
6 | 5 | 0.096981788 | 0.096981788 ✔
7 | 0 | 0.182773370 | 0.182773370 ✔
7 | 1 | 0.180286658 | 0.180286658 ✔
7 | 2 | 0.175313233 | 0.175313233 ✔
7 | 3 | 0.167853095 | 0.167853095 ✔
7 | 4 | 0.157906245 | 0.157906245 ✔
7 | 5 | 0.145472683 | 0.145472683 ✔
7 | 6 | 0.130552407 | 0.130552407 ✔
8 | 0 | 0.238724402 | 0.238724402 ✔
8 | 1 | 0.236237690 | 0.236237690 ✔
8 | 2 | 0.231264265 | 0.231264265 ✔
8 | 3 | 0.223804127 | 0.223804127 ✔
8 | 4 | 0.213857277 | 0.213857277 ✔
8 | 5 | 0.201423714 | 0.201423714 ✔
8 | 6 | 0.186503439 | 0.186503439 ✔
8 | 7 | 0.169096452 | 0.169096452 ✔
9 | 0 | 0.302135572 | 0.302135572 ✔
9 | 1 | 0.299648859 | 0.299648859 ✔
9 | 2 | 0.294675434 | 0.294675434 ✔
9 | 3 | 0.287215296 | 0.287215296 ✔
9 | 4 | 0.277268446 | 0.277268446 ✔
9 | 5 | 0.264834884 | 0.264834884 ✔
9 | 6 | 0.249914609 | 0.249914609 ✔
9 | 7 | 0.232507621 | 0.232507621 ✔
9 | 8 | 0.212613921 | 0.212613921 ✔
Expected Value of $r^2$
\[\langle r^2 \rangle = \int r^2 |R_{nl}(r)|^2 r^2 \mathrm{d}r = \frac{a_\mu^2}{2Z^2} n^2 \left[ 5n^2 + 1 - 3l(l+1) \right] \\ a_\mu = a_0 \frac{m_\mathrm{e}}{\mu} \\ \frac{1}{\mu} = \frac{1}{m_\mathrm{e}} + \frac{1}{m_\mathrm{p}}\]
Reference:
- 高柳和夫『朝倉物理学大系 11 原子分子物理学』(2000, 朝倉書店) pp.11-22
- Quantum Mechanics for Engineers by Leon van Dommelen
Antique.CoulombTwoBody(z₁=-1, z₂=1, m₁=1.0, m₂=1.0, mₑ=1.0, a₀=1.0, Eₕ=1.0, ħ=1.0)
n | l | analytical | numerical
-- | -- | -------------- | --------------
1 | 0 | 12.000000000 | 12.000000000 ✔
2 | 0 | 168.000000000 | 168.000000000 ✔
2 | 1 | 120.000000000 | 120.000000000 ✔
3 | 0 | 828.000000000 | 828.000000000 ✔
3 | 1 | 720.000000000 | 720.000000000 ✔
3 | 2 | 504.000000000 | 504.000000000 ✔
4 | 0 | 2592.000000000 | 2592.000000000 ✔
4 | 1 | 2400.000000000 | 2400.000000000 ✔
4 | 2 | 2016.000000000 | 2016.000000000 ✔
4 | 3 | 1440.000000000 | 1440.000000000 ✔
5 | 0 | 6300.000000000 | 6300.000000000 ✔
5 | 1 | 6000.000000000 | 6000.000000000 ✔
5 | 2 | 5400.000000000 | 5400.000000000 ✔
5 | 3 | 4500.000000000 | 4500.000000000 ✔
5 | 4 | 3300.000000000 | 3300.000000000 ✔
6 | 0 | 13032.000000000 | 13032.000000000 ✔
6 | 1 | 12600.000000000 | 12600.000000000 ✔
6 | 2 | 11736.000000000 | 11736.000000000 ✔
6 | 3 | 10440.000000000 | 10440.000000000 ✔
6 | 4 | 8712.000000000 | 8712.000000000 ✔
6 | 5 | 6552.000000000 | 6552.000000000 ✔
7 | 0 | 24108.000000000 | 24108.000000000 ✔
7 | 1 | 23520.000000000 | 23520.000000000 ✔
7 | 2 | 22344.000000000 | 22344.000000000 ✔
7 | 3 | 20580.000000000 | 20580.000000000 ✔
7 | 4 | 18228.000000000 | 18228.000000000 ✔
7 | 5 | 15288.000000000 | 15288.000000000 ✔
7 | 6 | 11760.000000000 | 11759.999999994 ✔
8 | 0 | 41088.000000000 | 41088.000000000 ✔
8 | 1 | 40320.000000000 | 40320.000000000 ✔
8 | 2 | 38784.000000000 | 38783.999999999 ✔
8 | 3 | 36480.000000000 | 36479.999999999 ✔
8 | 4 | 33408.000000000 | 33408.000000000 ✔
8 | 5 | 29568.000000000 | 29568.000000000 ✔
8 | 6 | 24960.000000000 | 24960.000000000 ✔
8 | 7 | 19584.000000000 | 19584.000000000 ✔
9 | 0 | 65772.000000000 | 65772.000000000 ✔
9 | 1 | 64800.000000000 | 64800.000000000 ✔
9 | 2 | 62856.000000000 | 62856.000000001 ✔
9 | 3 | 59940.000000000 | 59940.000000000 ✔
9 | 4 | 56052.000000000 | 56051.999999999 ✔
9 | 5 | 51192.000000000 | 51192.000000000 ✔
9 | 6 | 45360.000000000 | 45360.000000000 ✔
9 | 7 | 38556.000000000 | 38556.000000000 ✔
9 | 8 | 30780.000000000 | 30780.000000000 ✔
Antique.CoulombTwoBody(z₁=-1, z₂=1, m₁=1.0, m₂=206.768283, mₑ=1.0, a₀=1.0, Eₕ=1.0, ħ=1.0)
n | l | analytical | numerical
-- | -- | -------------- | --------------
1 | 0 | 3.029088160 | 3.029088160 ✔
2 | 0 | 42.407234247 | 42.407234247 ✔
2 | 1 | 30.290881605 | 30.290881605 ✔
3 | 0 | 209.007083072 | 209.007083072 ✔
3 | 1 | 181.745289628 | 181.745289628 ✔
3 | 2 | 127.221702740 | 127.221702740 ✔
4 | 0 | 654.283042661 | 654.283042660 ✔
4 | 1 | 605.817632093 | 605.817632093 ✔
4 | 2 | 508.886810958 | 508.886810958 ✔
4 | 3 | 363.490579256 | 363.490579256 ✔
5 | 0 | 1590.271284244 | 1590.271284244 ✔
5 | 1 | 1514.544080233 | 1514.544080233 ✔
5 | 2 | 1363.089672209 | 1363.089672209 ✔
5 | 3 | 1135.908060175 | 1135.908060175 ✔
5 | 4 | 832.999244128 | 832.999244128 ✔
6 | 0 | 3289.589742266 | 3289.589742266 ✔
6 | 1 | 3180.542568489 | 3180.542568489 ✔
6 | 2 | 2962.448220935 | 2962.448220935 ✔
6 | 3 | 2635.306699605 | 2635.306699605 ✔
6 | 4 | 2199.118004498 | 2199.118004498 ✔
6 | 5 | 1653.882135614 | 1653.882135614 ✔
7 | 0 | 6085.438114375 | 6085.438114375 ✔
7 | 1 | 5937.012794512 | 5937.012794512 ✔
7 | 2 | 5640.162154787 | 5640.162154787 ✔
7 | 3 | 5194.886195198 | 5194.886195198 ✔
7 | 4 | 4601.184915747 | 4601.184915747 ✔
7 | 5 | 3859.058316433 | 3859.058316433 ✔
7 | 6 | 2968.506397256 | 2968.506397256 ✔
8 | 0 | 10371.597861434 | 10371.597861434 ✔
8 | 1 | 10177.736219164 | 10177.736219164 ✔
8 | 2 | 9790.012934624 | 9790.012934624 ✔
8 | 3 | 9208.428007815 | 9208.428007815 ✔
8 | 4 | 8432.981438736 | 8432.981438736 ✔
8 | 5 | 7463.673227387 | 7463.673227387 ✔
8 | 6 | 6300.503373768 | 6300.503373768 ✔
8 | 7 | 4943.471877880 | 4943.471877880 ✔
9 | 0 | 16602.432207511 | 16602.432207511 ✔
9 | 1 | 16357.076066514 | 16357.076066514 ✔
9 | 2 | 15866.363784518 | 15866.363784518 ✔
9 | 3 | 15130.295361525 | 15130.295361525 ✔
9 | 4 | 14148.870797534 | 14148.870797534 ✔
9 | 5 | 12922.090092546 | 12922.090092546 ✔
9 | 6 | 11449.953246560 | 11449.953246559 ✔
9 | 7 | 9732.460259576 | 9732.460259576 ✔
9 | 8 | 7769.611131594 | 7769.611131594 ✔
Antique.CoulombTwoBody(z₁=-1, z₂=1, m₁=1.0, m₂=1836.15267343, mₑ=1.0, a₀=1.0, Eₕ=1.0, ħ=1.0)
n | l | analytical | numerical
-- | -- | -------------- | --------------
1 | 0 | 3.003268592 | 3.003268592 ✔
2 | 0 | 42.045760287 | 42.045760287 ✔
2 | 1 | 30.032685920 | 30.032685920 ✔
3 | 0 | 207.225532845 | 207.225532845 ✔
3 | 1 | 180.196115517 | 180.196115517 ✔
3 | 2 | 126.137280862 | 126.137280862 ✔
4 | 0 | 648.706015862 | 648.706015862 ✔
4 | 1 | 600.653718390 | 600.653718390 ✔
4 | 2 | 504.549123448 | 504.549123448 ✔
4 | 3 | 360.392231034 | 360.392231034 ✔
5 | 0 | 1576.716010775 | 1576.716010775 ✔
5 | 1 | 1501.634295976 | 1501.634295976 ✔
5 | 2 | 1351.470866378 | 1351.470866378 ✔
5 | 3 | 1126.225721982 | 1126.225721982 ✔
5 | 4 | 825.898862787 | 825.898862787 ✔
6 | 0 | 3261.549690860 | 3261.549690860 ✔
6 | 1 | 3153.432021550 | 3153.432021550 ✔
6 | 2 | 2937.196682929 | 2937.196682929 ✔
6 | 3 | 2612.843674998 | 2612.843674998 ✔
6 | 4 | 2180.372997757 | 2180.372997757 ✔
6 | 5 | 1639.784651206 | 1639.784651206 ✔
7 | 0 | 6033.566601232 | 6033.566601232 ✔
7 | 1 | 5886.406440226 | 5886.406440226 ✔
7 | 2 | 5592.086118215 | 5592.086118215 ✔
7 | 3 | 5150.605635198 | 5150.605635198 ✔
7 | 4 | 4561.964991175 | 4561.964991175 ✔
7 | 5 | 3826.164186147 | 3826.164186147 ✔
7 | 6 | 2943.203220113 | 2943.203220113 ✔
8 | 0 | 10283.191658844 | 10283.191658844 ✔
8 | 1 | 10090.982468959 | 10090.982468959 ✔
8 | 2 | 9706.564089189 | 9706.564089189 ✔
8 | 3 | 9129.936519534 | 9129.936519534 ✔
8 | 4 | 8361.099759994 | 8361.099759994 ✔
8 | 5 | 7400.053810570 | 7400.053810570 ✔
8 | 6 | 6246.798671260 | 6246.798671260 ✔
8 | 7 | 4901.334342066 | 4901.334342066 ✔
9 | 0 | 16460.915152489 | 16460.915152489 ✔
9 | 1 | 16217.650396541 | 16217.650396541 ✔
9 | 2 | 15731.120884645 | 15731.120884645 ✔
9 | 3 | 15001.326616800 | 15001.326616800 ✔
9 | 4 | 14028.267593008 | 14028.267593008 ✔
9 | 5 | 12811.943813267 | 12811.943813267 ✔
9 | 6 | 11352.355277579 | 11352.355277579 ✔
9 | 7 | 9649.501985942 | 9649.501985942 ✔
9 | 8 | 7703.383938357 | 7703.383938357 ✔
Antique.CoulombTwoBody(z₁=-1, z₂=1, m₁=1.0, m₂=Inf, mₑ=1.0, a₀=1.0, Eₕ=1.0, ħ=1.0)
n | l | analytical | numerical
-- | -- | -------------- | --------------
1 | 0 | 3.000000000 | 3.000000000 ✔
2 | 0 | 42.000000000 | 42.000000000 ✔
2 | 1 | 30.000000000 | 30.000000000 ✔
3 | 0 | 207.000000000 | 207.000000000 ✔
3 | 1 | 180.000000000 | 180.000000000 ✔
3 | 2 | 126.000000000 | 126.000000000 ✔
4 | 0 | 648.000000000 | 648.000000000 ✔
4 | 1 | 600.000000000 | 600.000000000 ✔
4 | 2 | 504.000000000 | 504.000000000 ✔
4 | 3 | 360.000000000 | 360.000000000 ✔
5 | 0 | 1575.000000000 | 1575.000000000 ✔
5 | 1 | 1500.000000000 | 1500.000000000 ✔
5 | 2 | 1350.000000000 | 1350.000000000 ✔
5 | 3 | 1125.000000000 | 1125.000000000 ✔
5 | 4 | 825.000000000 | 825.000000000 ✔
6 | 0 | 3258.000000000 | 3258.000000000 ✔
6 | 1 | 3150.000000000 | 3150.000000000 ✔
6 | 2 | 2934.000000000 | 2934.000000000 ✔
6 | 3 | 2610.000000000 | 2610.000000000 ✔
6 | 4 | 2178.000000000 | 2178.000000000 ✔
6 | 5 | 1638.000000000 | 1638.000000000 ✔
7 | 0 | 6027.000000000 | 6027.000000000 ✔
7 | 1 | 5880.000000000 | 5880.000000000 ✔
7 | 2 | 5586.000000000 | 5586.000000000 ✔
7 | 3 | 5145.000000000 | 5145.000000000 ✔
7 | 4 | 4557.000000000 | 4557.000000000 ✔
7 | 5 | 3822.000000000 | 3822.000000000 ✔
7 | 6 | 2940.000000000 | 2940.000000000 ✔
8 | 0 | 10272.000000000 | 10272.000000000 ✔
8 | 1 | 10080.000000000 | 10080.000000000 ✔
8 | 2 | 9696.000000000 | 9696.000000000 ✔
8 | 3 | 9120.000000000 | 9120.000000000 ✔
8 | 4 | 8352.000000000 | 8352.000000000 ✔
8 | 5 | 7392.000000000 | 7392.000000000 ✔
8 | 6 | 6240.000000000 | 6240.000000000 ✔
8 | 7 | 4896.000000000 | 4896.000000000 ✔
9 | 0 | 16443.000000000 | 16443.000000000 ✔
9 | 1 | 16200.000000000 | 16200.000000000 ✔
9 | 2 | 15714.000000000 | 15714.000000000 ✔
9 | 3 | 14985.000000000 | 14985.000000000 ✔
9 | 4 | 14013.000000000 | 14013.000000000 ✔
9 | 5 | 12798.000000000 | 12798.000000000 ✔
9 | 6 | 11340.000000000 | 11340.000000000 ✔
9 | 7 | 9639.000000000 | 9639.000000000 ✔
9 | 8 | 7695.000000000 | 7695.000000000 ✔
Antique.CoulombTwoBody(z₁=-1, z₂=1, m₁=206.768283, m₂=1836.15267343, mₑ=1.0, a₀=1.0, Eₕ=1.0, ħ=1.0)
n | l | analytical | numerical
-- | -- | -------------- | --------------
1 | 0 | 0.000086864 | 0.000086864 ✔
2 | 0 | 0.001216094 | 0.001216094 ✔
2 | 1 | 0.000868638 | 0.000868638 ✔
3 | 0 | 0.005993604 | 0.005993604 ✔
3 | 1 | 0.005211830 | 0.005211830 ✔
3 | 2 | 0.003648281 | 0.003648281 ✔
4 | 0 | 0.018762587 | 0.018762587 ✔
4 | 1 | 0.017372765 | 0.017372765 ✔
4 | 2 | 0.014593123 | 0.014593123 ✔
4 | 3 | 0.010423659 | 0.010423659 ✔
5 | 0 | 0.045603509 | 0.045603509 ✔
5 | 1 | 0.043431914 | 0.043431914 ✔
5 | 2 | 0.039088722 | 0.039088722 ✔
5 | 3 | 0.032573935 | 0.032573935 ✔
5 | 4 | 0.023887552 | 0.023887552 ✔
6 | 0 | 0.094334116 | 0.094334116 ✔
6 | 1 | 0.091207019 | 0.091207019 ✔
6 | 2 | 0.084952823 | 0.084952823 ✔
6 | 3 | 0.075571530 | 0.075571530 ✔
6 | 4 | 0.063063139 | 0.063063139 ✔
6 | 5 | 0.047427650 | 0.047427650 ✔
7 | 0 | 0.174509429 | 0.174509429 ✔
7 | 1 | 0.170253101 | 0.170253101 ✔
7 | 2 | 0.161740446 | 0.161740446 ✔
7 | 3 | 0.148971464 | 0.148971464 ✔
7 | 4 | 0.131946153 | 0.131946153 ✔
7 | 5 | 0.110664516 | 0.110664516 ✔
7 | 6 | 0.085126551 | 0.085126551 ✔
8 | 0 | 0.297421744 | 0.297421744 ✔
8 | 1 | 0.291862459 | 0.291862459 ✔
8 | 2 | 0.280743889 | 0.280743889 ✔
8 | 3 | 0.264066035 | 0.264066035 ✔
8 | 4 | 0.241828895 | 0.241828895 ✔
8 | 5 | 0.214032470 | 0.214032470 ✔
8 | 6 | 0.180676761 | 0.180676761 ✔
8 | 7 | 0.141761766 | 0.141761766 ✔
9 | 0 | 0.476100637 | 0.476100637 ✔
9 | 1 | 0.469064667 | 0.469064667 ✔
9 | 2 | 0.454992727 | 0.454992727 ✔
9 | 3 | 0.433884817 | 0.433884817 ✔
9 | 4 | 0.405740937 | 0.405740937 ✔
9 | 5 | 0.370561087 | 0.370561087 ✔
9 | 6 | 0.328345267 | 0.328345267 ✔
9 | 7 | 0.279093477 | 0.279093477 ✔
9 | 8 | 0.222805717 | 0.222805717 ✔
Antique.CoulombTwoBody(z₁=-1, z₂=2, m₁=206.768283, m₂=7294.29954142, mₑ=1.0, a₀=1.0, Eₕ=1.0, ħ=1.0)
n | l | analytical | numerical
-- | -- | -------------- | --------------
1 | 0 | 0.000018551 | 0.000018551 ✔
2 | 0 | 0.000259717 | 0.000259717 ✔
2 | 1 | 0.000185512 | 0.000185512 ✔
3 | 0 | 0.001280034 | 0.001280034 ✔
3 | 1 | 0.001113073 | 0.001113073 ✔
3 | 2 | 0.000779151 | 0.000779151 ✔
4 | 0 | 0.004007063 | 0.004007063 ✔
4 | 1 | 0.003710244 | 0.003710244 ✔
4 | 2 | 0.003116605 | 0.003116605 ✔
4 | 3 | 0.002226146 | 0.002226146 ✔
5 | 0 | 0.009739389 | 0.009739389 ✔
5 | 1 | 0.009275609 | 0.009275609 ✔
5 | 2 | 0.008348048 | 0.008348048 ✔
5 | 3 | 0.006956707 | 0.006956707 ✔
5 | 4 | 0.005101585 | 0.005101585 ✔
6 | 0 | 0.020146622 | 0.020146622 ✔
6 | 1 | 0.019478778 | 0.019478778 ✔
6 | 2 | 0.018143091 | 0.018143091 ✔
6 | 3 | 0.016139559 | 0.016139559 ✔
6 | 4 | 0.013468184 | 0.013468184 ✔
6 | 5 | 0.010128965 | 0.010128965 ✔
7 | 0 | 0.037269396 | 0.037269396 ✔
7 | 1 | 0.036360386 | 0.036360386 ✔
7 | 2 | 0.034542367 | 0.034542367 ✔
7 | 3 | 0.031815338 | 0.031815338 ✔
7 | 4 | 0.028179299 | 0.028179299 ✔
7 | 5 | 0.023634251 | 0.023634251 ✔
7 | 6 | 0.018180193 | 0.018180193 ✔
8 | 0 | 0.063519369 | 0.063519369 ✔
8 | 1 | 0.062332091 | 0.062332091 ✔
8 | 2 | 0.059957535 | 0.059957535 ✔
8 | 3 | 0.056395701 | 0.056395701 ✔
8 | 4 | 0.051646590 | 0.051646590 ✔
8 | 5 | 0.045710200 | 0.045710200 ✔
8 | 6 | 0.038586532 | 0.038586532 ✔
8 | 7 | 0.030275587 | 0.030275587 ✔
9 | 0 | 0.101679223 | 0.101679223 ✔
9 | 1 | 0.100176575 | 0.100176575 ✔
9 | 2 | 0.097171277 | 0.097171277 ✔
9 | 3 | 0.092663332 | 0.092663332 ✔
9 | 4 | 0.086652737 | 0.086652737 ✔
9 | 5 | 0.079139494 | 0.079139494 ✔
9 | 6 | 0.070123602 | 0.070123602 ✔
9 | 7 | 0.059605062 | 0.059605062 ✔
9 | 8 | 0.047583873 | 0.047583873 ✔
Virial Theorem
The virial theorem $2\langle T \rangle + \langle V \rangle = 0$ and the definition of Hamiltonian $\langle H \rangle = \langle T \rangle + \langle V \rangle$ derive $\langle H \rangle = \frac{1}{2} \langle V \rangle$ and $\langle H \rangle = -\langle T \rangle$.
\[\frac{1}{2} \int \psi_n^\ast(x) V(x) \psi_n(x) \mathrm{d}x = E_n\]
Antique.CoulombTwoBody(z₁=-1, z₂=1, m₁=1.0, m₂=1.0, mₑ=1.0, a₀=1.0, Eₕ=1.0, ħ=1.0)
n | analytical | numerical
-- | -------------- | --------------
1 | -0.250000000 | -0.250000000 ✔
2 | -0.062500000 | -0.062500000 ✔
3 | -0.027777778 | -0.027777778 ✔
4 | -0.015625000 | -0.015625000 ✔
5 | -0.010000000 | -0.010000000 ✔
6 | -0.006944444 | -0.006944444 ✔
7 | -0.005102041 | -0.005102041 ✔
8 | -0.003906250 | -0.003906250 ✔
9 | -0.003086420 | -0.003086420 ✔
10 | -0.002500000 | -0.002500000 ✔
Antique.CoulombTwoBody(z₁=-1, z₂=1, m₁=1.0, m₂=206.768283, mₑ=1.0, a₀=1.0, Eₕ=1.0, ħ=1.0)
n | analytical | numerical
-- | -------------- | --------------
1 | -0.497593473 | -0.497593473 ✔
2 | -0.124398368 | -0.124398368 ✔
3 | -0.055288164 | -0.055288164 ✔
4 | -0.031099592 | -0.031099592 ✔
5 | -0.019903739 | -0.019903739 ✔
6 | -0.013822041 | -0.013822041 ✔
7 | -0.010154969 | -0.010154969 ✔
8 | -0.007774898 | -0.007774898 ✔
9 | -0.006143129 | -0.006143129 ✔
10 | -0.004975935 | -0.004975935 ✔
Antique.CoulombTwoBody(z₁=-1, z₂=1, m₁=1.0, m₂=1836.15267343, mₑ=1.0, a₀=1.0, Eₕ=1.0, ħ=1.0)
n | analytical | numerical
-- | -------------- | --------------
1 | -0.499727840 | -0.499727840 ✔
2 | -0.124931960 | -0.124931960 ✔
3 | -0.055525316 | -0.055525316 ✔
4 | -0.031232990 | -0.031232990 ✔
5 | -0.019989114 | -0.019989114 ✔
6 | -0.013881329 | -0.013881329 ✔
7 | -0.010198527 | -0.010198527 ✔
8 | -0.007808247 | -0.007808247 ✔
9 | -0.006169480 | -0.006169480 ✔
10 | -0.004997278 | -0.004997278 ✔
Antique.CoulombTwoBody(z₁=-1, z₂=1, m₁=1.0, m₂=Inf, mₑ=1.0, a₀=1.0, Eₕ=1.0, ħ=1.0)
n | analytical | numerical
-- | -------------- | --------------
1 | -0.500000000 | -0.500000000 ✔
2 | -0.125000000 | -0.125000000 ✔
3 | -0.055555556 | -0.055555556 ✔
4 | -0.031250000 | -0.031250000 ✔
5 | -0.020000000 | -0.020000000 ✔
6 | -0.013888889 | -0.013888889 ✔
7 | -0.010204082 | -0.010204082 ✔
8 | -0.007812500 | -0.007812500 ✔
9 | -0.006172840 | -0.006172840 ✔
10 | -0.005000000 | -0.005000000 ✔
Antique.CoulombTwoBody(z₁=-1, z₂=1, m₁=206.768283, m₂=1836.15267343, mₑ=1.0, a₀=1.0, Eₕ=1.0, ħ=1.0)
n | analytical | numerical
-- | -------------- | --------------
1 | -92.920417311 | -92.920417311 ✔
2 | -23.230104328 | -23.230104328 ✔
3 | -10.324490812 | -10.324490812 ✔
4 | -5.807526082 | -5.807526082 ✔
5 | -3.716816692 | -3.716816692 ✔
6 | -2.581122703 | -2.581122703 ✔
7 | -1.896335047 | -1.896335047 ✔
8 | -1.451881520 | -1.451881520 ✔
9 | -1.147165646 | -1.147165646 ✔
10 | -0.929204173 | -0.929204173 ✔
Antique.CoulombTwoBody(z₁=-1, z₂=2, m₁=206.768283, m₂=7294.29954142, mₑ=1.0, a₀=1.0, Eₕ=1.0, ħ=1.0)
n | analytical | numerical
-- | -------------- | --------------
1 | -402.137356219 | -402.137356219 ✔
2 | -100.534339055 | -100.534339055 ✔
3 | -44.681928469 | -44.681928469 ✔
4 | -25.133584764 | -25.133584764 ✔
5 | -16.085494249 | -16.085494249 ✔
6 | -11.170482117 | -11.170482117 ✔
7 | -8.206884821 | -8.206884821 ✔
8 | -6.283396191 | -6.283396191 ✔
9 | -4.964658719 | -4.964658719 ✔
10 | -4.021373562 | -4.021373562 ✔
Antique.CoulombTwoBody(z₁=-1, z₂=2, m₁=1.0, m₂=1.0, mₑ=1.0, a₀=1.0, Eₕ=27.211386245988, ħ=1.0)
n | analytical | numerical
-- | -------------- | --------------
1 | -27.211386246 | -27.211386246 ✔
2 | -6.802846561 | -6.802846561 ✔
3 | -3.023487361 | -3.023487361 ✔
4 | -1.700711640 | -1.700711640 ✔
5 | -1.088455450 | -1.088455450 ✔
6 | -0.755871840 | -0.755871840 ✔
7 | -0.555334413 | -0.555334413 ✔
8 | -0.425177910 | -0.425177910 ✔
9 | -0.335943040 | -0.335943040 ✔
10 | -0.272113862 | -0.272113862 ✔
Antique.CoulombTwoBody(z₁=-1, z₂=2, m₁=9.1093837015e-31, m₂=1.67262192595e-27, mₑ=9.1093837015e-31, a₀=5.29177210903e-11, Eₕ=4.3597447222071e-18, ħ=1.054571817e-34)
n | analytical | numerical
-- | -------------- | --------------
1 | -0.000000000 | -0.000000000 ✔
2 | -0.000000000 | -0.000000000 ✔
3 | -0.000000000 | -0.000000000 ✔
4 | -0.000000000 | -0.000000000 ✔
5 | -0.000000000 | -0.000000000 ✔
6 | -0.000000000 | -0.000000000 ✔
7 | -0.000000000 | -0.000000000 ✔
8 | -0.000000000 | -0.000000000 ✔
9 | -0.000000000 | -0.000000000 ✔
10 | -0.000000000 | -0.000000000 ✔
Normalization & Orthogonality of $\psi_n(r,\theta,\varphi)$
\[\int \psi_i^\ast(r,\theta,\varphi) \psi_j(r,\theta,\varphi) r^2 \sin(\theta) \mathrm{d}r \mathrm{d}\theta \mathrm{d}\varphi = \delta_{ij}\]
n₁ | n₂ | l₁ | l₂ | m₁ | m₂ | analytical | numerical
-- | -- | -- | -- | -- | -- | -------------- | --------------
1 | 1 | 0 | 0 | 0 | 0 | 1.000000000 | 1.000000210 ✔
1 | 2 | 0 | 0 | 0 | 0 | 0.000000000 | -0.000000692 ✔
1 | 2 | 0 | 1 | 0 | -1 | 0.000000000 | -0.000000924 ✔
1 | 2 | 0 | 1 | 0 | 0 | 0.000000000 | -0.000000000 ✔
1 | 2 | 0 | 1 | 0 | 1 | 0.000000000 | 0.000000924 ✔
1 | 3 | 0 | 0 | 0 | 0 | 0.000000000 | 0.000000099 ✔
1 | 3 | 0 | 1 | 0 | -1 | 0.000000000 | 0.000004353 ✔
1 | 3 | 0 | 1 | 0 | 0 | 0.000000000 | -0.000000000 ✔
1 | 3 | 0 | 1 | 0 | 1 | 0.000000000 | -0.000004353 ✔
1 | 3 | 0 | 2 | 0 | -2 | 0.000000000 | 0.000025511 ✔
1 | 3 | 0 | 2 | 0 | -1 | 0.000000000 | -0.000000000 ✔
1 | 3 | 0 | 2 | 0 | 0 | 0.000000000 | -0.000011896 ✔
1 | 3 | 0 | 2 | 0 | 1 | 0.000000000 | 0.000000000 ✔
1 | 3 | 0 | 2 | 0 | 2 | 0.000000000 | 0.000025511 ✔
2 | 1 | 0 | 0 | 0 | 0 | 0.000000000 | -0.000000692 ✔
2 | 1 | 1 | 0 | -1 | 0 | 0.000000000 | -0.000000924 ✔
2 | 1 | 1 | 0 | 0 | 0 | 0.000000000 | -0.000000000 ✔
2 | 1 | 1 | 0 | 1 | 0 | 0.000000000 | 0.000000924 ✔
2 | 2 | 0 | 0 | 0 | 0 | 1.000000000 | 1.000000537 ✔
2 | 2 | 0 | 1 | 0 | -1 | 0.000000000 | 0.000008848 ✔
2 | 2 | 0 | 1 | 0 | 0 | 0.000000000 | 0.000000085 ✔
2 | 2 | 0 | 1 | 0 | 1 | 0.000000000 | -0.000008848 ✔
2 | 2 | 1 | 0 | -1 | 0 | 0.000000000 | 0.000008848 ✔
2 | 2 | 1 | 0 | 0 | 0 | 0.000000000 | 0.000000085 ✔
2 | 2 | 1 | 0 | 1 | 0 | 0.000000000 | -0.000008848 ✔
2 | 2 | 1 | 1 | -1 | -1 | 1.000000000 | 1.000003369 ✔
2 | 2 | 1 | 1 | -1 | 0 | 0.000000000 | 0.000000000 ✔
2 | 2 | 1 | 1 | -1 | 1 | 0.000000000 | -0.004757877 ✔
2 | 2 | 1 | 1 | 0 | -1 | 0.000000000 | 0.000000000 ✔
2 | 2 | 1 | 1 | 0 | 0 | 1.000000000 | 1.000017035 ✔
2 | 2 | 1 | 1 | 0 | 1 | 0.000000000 | -0.000000000 ✔
2 | 2 | 1 | 1 | 1 | -1 | 0.000000000 | -0.004757877 ✔
2 | 2 | 1 | 1 | 1 | 0 | 0.000000000 | -0.000000000 ✔
2 | 2 | 1 | 1 | 1 | 1 | 1.000000000 | 1.000003369 ✔
2 | 3 | 0 | 0 | 0 | 0 | 0.000000000 | -0.000001541 ✔
2 | 3 | 0 | 1 | 0 | -1 | 0.000000000 | -0.000014077 ✔
2 | 3 | 0 | 1 | 0 | 0 | 0.000000000 | 0.000000163 ✔
2 | 3 | 0 | 1 | 0 | 1 | 0.000000000 | 0.000014077 ✔
2 | 3 | 0 | 2 | 0 | -2 | 0.000000000 | 0.000154504 ✔
2 | 3 | 0 | 2 | 0 | -1 | 0.000000000 | -0.000000000 ✔
2 | 3 | 0 | 2 | 0 | 0 | 0.000000000 | -0.000293967 ✔
2 | 3 | 0 | 2 | 0 | 1 | 0.000000000 | 0.000000000 ✔
2 | 3 | 0 | 2 | 0 | 2 | 0.000000000 | 0.000154504 ✔
2 | 3 | 1 | 0 | -1 | 0 | 0.000000000 | -0.000010891 ✔
2 | 3 | 1 | 0 | 0 | 0 | 0.000000000 | -0.000000000 ✔
2 | 3 | 1 | 0 | 1 | 0 | 0.000000000 | 0.000010891 ✔
2 | 3 | 1 | 1 | -1 | -1 | 0.000000000 | -0.000012431 ✔
2 | 3 | 1 | 1 | -1 | 0 | 0.000000000 | 0.000000000 ✔
2 | 3 | 1 | 1 | -1 | 1 | 0.000000000 | 0.000055042 ✔
2 | 3 | 1 | 1 | 0 | -1 | 0.000000000 | -0.000000000 ✔
2 | 3 | 1 | 1 | 0 | 0 | 0.000000000 | -0.000006532 ✔
2 | 3 | 1 | 1 | 0 | 1 | 0.000000000 | 0.000000000 ✔
2 | 3 | 1 | 1 | 1 | -1 | 0.000000000 | 0.000055042 ✔
2 | 3 | 1 | 1 | 1 | 0 | 0.000000000 | -0.000000000 ✔
2 | 3 | 1 | 1 | 1 | 1 | 0.000000000 | -0.000012431 ✔
2 | 3 | 1 | 2 | -1 | -2 | 0.000000000 | 0.000015338 ✔
2 | 3 | 1 | 2 | -1 | -1 | 0.000000000 | 0.000000042 ✔
2 | 3 | 1 | 2 | -1 | 0 | 0.000000000 | 0.000108904 ✔
2 | 3 | 1 | 2 | -1 | 1 | 0.000000000 | 0.000000000 ✔
2 | 3 | 1 | 2 | -1 | 2 | 0.000000000 | -0.000010855 ✔
2 | 3 | 1 | 2 | 0 | -2 | 0.000000000 | -0.000000000 ✔
2 | 3 | 1 | 2 | 0 | -1 | 0.000000000 | -0.000004996 ✔
2 | 3 | 1 | 2 | 0 | 0 | 0.000000000 | -0.000000000 ✔
2 | 3 | 1 | 2 | 0 | 1 | 0.000000000 | 0.000004996 ✔
2 | 3 | 1 | 2 | 0 | 2 | 0.000000000 | -0.000000000 ✔
2 | 3 | 1 | 2 | 1 | -2 | 0.000000000 | 0.000010855 ✔
2 | 3 | 1 | 2 | 1 | -1 | 0.000000000 | 0.000000000 ✔
2 | 3 | 1 | 2 | 1 | 0 | 0.000000000 | -0.000108904 ✔
2 | 3 | 1 | 2 | 1 | 1 | 0.000000000 | 0.000000042 ✔
2 | 3 | 1 | 2 | 1 | 2 | 0.000000000 | -0.000015338 ✔
3 | 1 | 0 | 0 | 0 | 0 | 0.000000000 | 0.000000099 ✔
3 | 1 | 1 | 0 | -1 | 0 | 0.000000000 | 0.000004353 ✔
3 | 1 | 1 | 0 | 0 | 0 | 0.000000000 | -0.000000000 ✔
3 | 1 | 1 | 0 | 1 | 0 | 0.000000000 | -0.000004353 ✔
3 | 1 | 2 | 0 | -2 | 0 | 0.000000000 | 0.000025511 ✔
3 | 1 | 2 | 0 | -1 | 0 | 0.000000000 | 0.000000026 ✔
3 | 1 | 2 | 0 | 0 | 0 | 0.000000000 | -0.000011896 ✔
3 | 1 | 2 | 0 | 1 | 0 | 0.000000000 | -0.000000026 ✔
3 | 1 | 2 | 0 | 2 | 0 | 0.000000000 | 0.000025511 ✔
3 | 2 | 0 | 0 | 0 | 0 | 0.000000000 | -0.000001541 ✔
3 | 2 | 0 | 1 | 0 | -1 | 0.000000000 | -0.000010891 ✔
3 | 2 | 0 | 1 | 0 | 0 | 0.000000000 | -0.000000000 ✔
3 | 2 | 0 | 1 | 0 | 1 | 0.000000000 | 0.000010891 ✔
3 | 2 | 1 | 0 | -1 | 0 | 0.000000000 | -0.000014077 ✔
3 | 2 | 1 | 0 | 0 | 0 | 0.000000000 | -0.000000000 ✔
3 | 2 | 1 | 0 | 1 | 0 | 0.000000000 | 0.000014077 ✔
3 | 2 | 1 | 1 | -1 | -1 | 0.000000000 | -0.000012431 ✔
3 | 2 | 1 | 1 | -1 | 0 | 0.000000000 | -0.000000000 ✔
3 | 2 | 1 | 1 | -1 | 1 | 0.000000000 | 0.000055042 ✔
3 | 2 | 1 | 1 | 0 | -1 | 0.000000000 | -0.000000000 ✔
3 | 2 | 1 | 1 | 0 | 0 | 0.000000000 | -0.000006532 ✔
3 | 2 | 1 | 1 | 0 | 1 | 0.000000000 | 0.000000000 ✔
3 | 2 | 1 | 1 | 1 | -1 | 0.000000000 | 0.000055042 ✔
3 | 2 | 1 | 1 | 1 | 0 | 0.000000000 | 0.000000000 ✔
3 | 2 | 1 | 1 | 1 | 1 | 0.000000000 | -0.000012431 ✔
3 | 2 | 2 | 0 | -2 | 0 | 0.000000000 | 0.000154504 ✔
3 | 2 | 2 | 0 | -1 | 0 | 0.000000000 | 0.000000000 ✔
3 | 2 | 2 | 0 | 0 | 0 | 0.000000000 | -0.000293967 ✔
3 | 2 | 2 | 0 | 1 | 0 | 0.000000000 | -0.000000000 ✔
3 | 2 | 2 | 0 | 2 | 0 | 0.000000000 | 0.000154504 ✔
3 | 2 | 2 | 1 | -2 | -1 | 0.000000000 | 0.000015338 ✔
3 | 2 | 2 | 1 | -2 | 0 | 0.000000000 | -0.000000000 ✔
3 | 2 | 2 | 1 | -2 | 1 | 0.000000000 | 0.000010855 ✔
3 | 2 | 2 | 1 | -1 | -1 | 0.000000000 | -0.000000042 ✔
3 | 2 | 2 | 1 | -1 | 0 | 0.000000000 | -0.000004996 ✔
3 | 2 | 2 | 1 | -1 | 1 | 0.000000000 | 0.000000000 ✔
3 | 2 | 2 | 1 | 0 | -1 | 0.000000000 | 0.000108904 ✔
3 | 2 | 2 | 1 | 0 | 0 | 0.000000000 | -0.000000000 ✔
3 | 2 | 2 | 1 | 0 | 1 | 0.000000000 | -0.000108904 ✔
3 | 2 | 2 | 1 | 1 | -1 | 0.000000000 | 0.000000000 ✔
3 | 2 | 2 | 1 | 1 | 0 | 0.000000000 | 0.000004996 ✔
3 | 2 | 2 | 1 | 1 | 1 | 0.000000000 | -0.000000042 ✔
3 | 2 | 2 | 1 | 2 | -1 | 0.000000000 | -0.000010855 ✔
3 | 2 | 2 | 1 | 2 | 0 | 0.000000000 | -0.000000000 ✔
3 | 2 | 2 | 1 | 2 | 1 | 0.000000000 | -0.000015338 ✔
3 | 3 | 0 | 0 | 0 | 0 | 1.000000000 | 1.000000527 ✔
3 | 3 | 0 | 1 | 0 | -1 | 0.000000000 | 0.000004118 ✔
3 | 3 | 0 | 1 | 0 | 0 | 0.000000000 | 0.000000000 ✔
3 | 3 | 0 | 1 | 0 | 1 | 0.000000000 | -0.000004118 ✔
3 | 3 | 0 | 2 | 0 | -2 | 0.000000000 | 0.005210186 ✔
3 | 3 | 0 | 2 | 0 | -1 | 0.000000000 | -0.000000000 ✔
3 | 3 | 0 | 2 | 0 | 0 | 0.000000000 | 0.000029733 ✔
3 | 3 | 0 | 2 | 0 | 1 | 0.000000000 | 0.000000000 ✔
3 | 3 | 0 | 2 | 0 | 2 | 0.000000000 | 0.005210186 ✔
3 | 3 | 1 | 0 | -1 | 0 | 0.000000000 | 0.000004118 ✔
3 | 3 | 1 | 0 | 0 | 0 | 0.000000000 | 0.000000000 ✔
3 | 3 | 1 | 0 | 1 | 0 | 0.000000000 | -0.000004118 ✔
3 | 3 | 1 | 1 | -1 | -1 | 1.000000000 | 0.999988568 ✔
3 | 3 | 1 | 1 | -1 | 0 | 0.000000000 | -0.000000000 ✔
3 | 3 | 1 | 1 | -1 | 1 | 0.000000000 | -0.007917562 ✔
3 | 3 | 1 | 1 | 0 | -1 | 0.000000000 | -0.000000000 ✔
3 | 3 | 1 | 1 | 0 | 0 | 1.000000000 | 1.000041898 ✔
3 | 3 | 1 | 1 | 0 | 1 | 0.000000000 | 0.000000000 ✔
3 | 3 | 1 | 1 | 1 | -1 | 0.000000000 | -0.007917562 ✔
3 | 3 | 1 | 1 | 1 | 0 | 0.000000000 | 0.000000000 ✔
3 | 3 | 1 | 1 | 1 | 1 | 1.000000000 | 0.999988568 ✔
3 | 3 | 1 | 2 | -1 | -2 | 0.000000000 | -0.000086839 ✔
3 | 3 | 1 | 2 | -1 | -1 | 0.000000000 | -0.000000000 ✔
3 | 3 | 1 | 2 | -1 | 0 | 0.000000000 | 0.000487545 ✔
3 | 3 | 1 | 2 | -1 | 1 | 0.000000000 | 0.000000000 ✔
3 | 3 | 1 | 2 | -1 | 2 | 0.000000000 | 0.000001116 ✔
3 | 3 | 1 | 2 | 0 | -2 | 0.000000000 | -0.000000000 ✔
3 | 3 | 1 | 2 | 0 | -1 | 0.000000000 | 0.000001627 ✔
3 | 3 | 1 | 2 | 0 | 0 | 0.000000000 | 0.000000000 ✔
3 | 3 | 1 | 2 | 0 | 1 | 0.000000000 | -0.000001627 ✔
3 | 3 | 1 | 2 | 0 | 2 | 0.000000000 | -0.000000000 ✔
3 | 3 | 1 | 2 | 1 | -2 | 0.000000000 | -0.000001116 ✔
3 | 3 | 1 | 2 | 1 | -1 | 0.000000000 | 0.000000000 ✔
3 | 3 | 1 | 2 | 1 | 0 | 0.000000000 | -0.000487545 ✔
3 | 3 | 1 | 2 | 1 | 1 | 0.000000000 | -0.000000000 ✔
3 | 3 | 1 | 2 | 1 | 2 | 0.000000000 | 0.000086839 ✔
3 | 3 | 2 | 0 | -2 | 0 | 0.000000000 | 0.005210186 ✔
3 | 3 | 2 | 0 | -1 | 0 | 0.000000000 | -0.000000000 ✔
3 | 3 | 2 | 0 | 0 | 0 | 0.000000000 | 0.000029733 ✔
3 | 3 | 2 | 0 | 1 | 0 | 0.000000000 | 0.000000000 ✔
3 | 3 | 2 | 0 | 2 | 0 | 0.000000000 | 0.005210186 ✔
3 | 3 | 2 | 1 | -2 | -1 | 0.000000000 | -0.000086839 ✔
3 | 3 | 2 | 1 | -2 | 0 | 0.000000000 | -0.000000000 ✔
3 | 3 | 2 | 1 | -2 | 1 | 0.000000000 | -0.000001116 ✔
3 | 3 | 2 | 1 | -1 | -1 | 0.000000000 | -0.000000000 ✔
3 | 3 | 2 | 1 | -1 | 0 | 0.000000000 | 0.000001627 ✔
3 | 3 | 2 | 1 | -1 | 1 | 0.000000000 | 0.000000000 ✔
3 | 3 | 2 | 1 | 0 | -1 | 0.000000000 | 0.000487545 ✔
3 | 3 | 2 | 1 | 0 | 0 | 0.000000000 | 0.000000000 ✔
3 | 3 | 2 | 1 | 0 | 1 | 0.000000000 | -0.000487545 ✔
3 | 3 | 2 | 1 | 1 | -1 | 0.000000000 | 0.000000000 ✔
3 | 3 | 2 | 1 | 1 | 0 | 0.000000000 | -0.000001627 ✔
3 | 3 | 2 | 1 | 1 | 1 | 0.000000000 | -0.000000000 ✔
3 | 3 | 2 | 1 | 2 | -1 | 0.000000000 | 0.000001116 ✔
3 | 3 | 2 | 1 | 2 | 0 | 0.000000000 | -0.000000000 ✔
3 | 3 | 2 | 1 | 2 | 1 | 0.000000000 | 0.000086839 ✔
3 | 3 | 2 | 2 | -2 | -2 | 1.000000000 | 0.999997476 ✔
3 | 3 | 2 | 2 | -2 | -1 | 0.000000000 | -0.000000000 ✔
3 | 3 | 2 | 2 | -2 | 0 | 0.000000000 | -0.002766702 ✔
3 | 3 | 2 | 2 | -2 | 1 | 0.000000000 | -0.000002196 ✔
3 | 3 | 2 | 2 | -2 | 2 | 0.000000000 | 0.003238344 ✔
3 | 3 | 2 | 2 | -1 | -2 | 0.000000000 | -0.000000000 ✔
3 | 3 | 2 | 2 | -1 | -1 | 1.000000000 | 1.000379973 ✔
3 | 3 | 2 | 2 | -1 | 0 | 0.000000000 | 0.000000000 ✔
3 | 3 | 2 | 2 | -1 | 1 | 0.000000000 | -0.002322810 ✔
3 | 3 | 2 | 2 | -1 | 2 | 0.000000000 | -0.000076604 ✔
3 | 3 | 2 | 2 | 0 | -2 | 0.000000000 | -0.002766702 ✔
3 | 3 | 2 | 2 | 0 | -1 | 0.000000000 | -0.000000000 ✔
3 | 3 | 2 | 2 | 0 | 0 | 1.000000000 | 1.000005135 ✔
3 | 3 | 2 | 2 | 0 | 1 | 0.000000000 | 0.000000000 ✔
3 | 3 | 2 | 2 | 0 | 2 | 0.000000000 | -0.002766702 ✔
3 | 3 | 2 | 2 | 1 | -2 | 0.000000000 | 0.000076604 ✔
3 | 3 | 2 | 2 | 1 | -1 | 0.000000000 | -0.002322810 ✔
3 | 3 | 2 | 2 | 1 | 0 | 0.000000000 | -0.000000000 ✔
3 | 3 | 2 | 2 | 1 | 1 | 1.000000000 | 1.000379973 ✔
3 | 3 | 2 | 2 | 1 | 2 | 0.000000000 | 0.000000000 ✔
3 | 3 | 2 | 2 | 2 | -2 | 0.000000000 | 0.003238344 ✔
3 | 3 | 2 | 2 | 2 | -1 | 0.000000000 | 0.000002196 ✔
3 | 3 | 2 | 2 | 2 | 0 | 0.000000000 | -0.002766702 ✔
3 | 3 | 2 | 2 | 2 | 1 | 0.000000000 | 0.000000000 ✔
3 | 3 | 2 | 2 | 2 | 2 | 1.000000000 | 0.999997476 ✔