References
- [1]
- D. J. Griffiths and D. F. Schroeter. Introduction to Quantum Mechanics. 3 Edition (Cambridge University Press, 2018).
- [2]
- J. Branson. The Delta Function Potential,
https://quantummechanics.ucsd.edu/ph130a/130_notes/node154.html
. Accessed: 2025-07-25. - [3]
- [4]
- J. P. Dahl and M. Springborg. The Morse oscillator in position space, momentum space, and phase space. J. Chem. Phys. 88, 4535–4547 (1988).
- [5]
- W.-K. Shao, Y. He and J. Pan. Some identities for the generalized Laguerre polynomials. J. Nonlinear Sci. Appl. 9, 3388–3396 (2016).
- [6]
- DLMF. The Digital Library of Mathematical Functions,
https://dlmf.nist.gov/
. Accessed: 2025-08-08. - [7]
- G. Pöschl and E. Teller. Bemerkungen zur Quantenmechanik des anharmonischen Oszillators. Zeitschrift für Physik 83, 143–151 (1933).
- [8]
- S. Flügge. Practical Quantum Mechanics. 1 Edition (Springer Berlin Heidelberg, 1999).
- [9]
- D. A. McQuarrie and J. D. Simon. Physical Chemistry: A Molecular Approach (University Science Books, 1997).
- [10]
- C. LibreTexts. The Energy Levels of a Rigid Rotor,
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(LibreTexts)/05%3A_The_Harmonic_Oscillator_and_the_Rigid_Rotor/5.08%3A_The_Energy_Levels_of_a_Rigid_Rotor
. Accessed: 2025-08-08. - [11]
- UCSD. UCSD Physics 130, Quantum Physics,
https://quantummechanics.ucsd.edu/ph130a/130_notes/node244.html
. Accessed: 2025-08-08. - [12]
- cpprefjp. C++ Japanese Reference,
https://cpprefjp.github.io/
. Accessed: 2025-08-08. - [13]
- A. Messiah. Quantum Mechanics. Vol. 1 (North-Holland Publishing Company, 1961).
- [14]
- W. Greiner. Quantum Mechanics: An Introduction (Springer, 2001).