Examples

Here are some practical examples. Please refer to the API reference for how to use each function.

Order of Accuracy

Here is an example of $\sin'(0)=\cos(0)=1$. The value asymptotically approaches the exact value as the order of the accuracy $m$ increases.

using FiniteDifferenceMatrices
using Printf

for m in 2:2:12
  @printf("m = %2d    %.18f\n", m, fdvalue(sin, 0.0, n=1, m=m, d=:c, h=big"0.05"))
end
m =  2    0.999583385413566576
m =  4    0.999999791728661594
m =  6    0.999999999888447098
m =  8    0.999999999999938038
m = 10    0.999999999999999965
m = 12    1.000000000000000000

Here is a comparison of exp(0.0) and fdvalue(exp, 0.0, n=n, m=m, d=:f). The error is proportional to $h^m$ (the solid line). But Float64 values do not follow the scaling law due to the rounding errors in small $h$. This problem is avoided by using BigFloat.

using FiniteDifferenceMatrices
using CairoMakie
CairoMakie.activate!(type = "svg")

for t in [Float64, BigFloat]
  f = Figure(size=(420*2,420), fontsize=11.5)
  for n in 1:2
    ax = Axis(
      f[1,n],
      title = "$t, n=$n",
      xlabel = L"h",
      ylabel = L"|f^{(n)} - \mathrm{fdvalue}|",
      titlesize = 16.5,
      ylabelsize = 16.5,
      xlabelsize = 16.5,
      xscale = log10,
      yscale = log10,
      limits = (8e-4,1.2e-1,1e-30,1)
    )
    for m in 1:9
      X = [0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001]
      Y = [abs(exp(0.0) - fdvalue(exp, 0.0, n=n, m=m, d=:f, h=convert(t,h))) for h in X]
      a = Y[1] / X[1]^m
      lines!(ax, [1e-4,1e0], x->a*x^m, color=m, colorrange=(1,9), colormap=:tab10, linestyle=:solid, linewidth=1)
      scatter!(ax, X, Y, label="m = $m", color=m, colorrange=(1,9), colormap=:tab10)
    end
    axislegend(ax, position=:rb, nbanks=3, colgap=10, rowgap=0, padding=(0,0,0,0), framevisible=false)
  end
  display(f)
end

Derivative

We approximate a function f to a vector [f(0.0), f(0.1), f(0.2), ...]. Its derivative is calculated as the product of a finite difference matrix and the vector. The values ​​at the ends of the domain have large errors.

using FiniteDifferenceMatrices
using CairoMakie
CairoMakie.activate!(type = "svg")

# domain X, function Y, differential operator D
Δx = 0.2
X = -3.7:Δx:3.7
Y = sin.(X)
D = fdmatrix(length(X), n=1, m=2, d=:c, h=Δx)

# derivative
Z1 = cos.(X) # analytical derivative
Z2 = D*Y     # numerical derivative

# plot
f = Figure(size=(420,300), fontsize=11.5)
ax = Axis(f[1,1], xlabel=L"x", ylabel=L"\sin'(x)", ylabelsize=16.5, xlabelsize=16.5)
lines!(ax, X, Z1, label="analytical")
scatter!(ax, X, Z2, label="numerical")
axislegend(ax, position=:cb, rowgap=0, padding=(5,5,2,2), framevisible=false)
f
Example block output

Discrete Approximation of Hamiltonian

Discrete approximations (the central finite difference of the second-order accuracy) of the Hamiltonian $\hat{H} = - \frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} + V(x)$ , the wave function $\psi(x)$ and the energy $E$ are written as

\[\pmb{H} = - \frac{\hbar^2}{2m} \cdot \frac{1}{h^2} \left(\begin{array}{ccccccc} -2 & 1 & 0 & \ldots \\ 1 & -2 & 1 & \ldots \\ 0 & 1 & -2 & \ldots \\ \vdots & \vdots & \vdots & \ddots \\ \end{array}\right) + \left(\begin{array}{ccccccc} V(x_1) & 0 & 0 & \ldots \\ 0 & V(x_2) & 0 & \ldots \\ 0 & 0 & V(x_3) & \ldots \\ \vdots & \vdots & \vdots & \ddots \\ \end{array}\right), \\ \pmb{\psi} = \left(\begin{array}{c} \psi(x_1) \\ \psi(x_2) \\ \psi(x_3) \\ \vdots \\ \end{array}\right), \\ E = \frac{\langle\psi|\hat{H}|\psi\rangle}{\langle\psi|\psi\rangle} \simeq \frac{\pmb{\psi}^\ast \pmb{H} \pmb{\psi}}{\pmb{\psi}^\ast \pmb{\psi}}.\]

Here, we show the non-dimensionalized Hamiltonian of the harmonic oscillator, its ground state wave function and the energy:

\[\hat{H} = - \frac{1}{2} \frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{1}{2}x^2, \\ \psi_0(x) = \pi^{-1/4} \exp \left( -\frac{1}{2}x^2 \right), \\ E_0 = \frac{\langle \psi_0 | \hat{H} | \psi_0 \rangle}{\langle \psi_0 | \psi_0 \rangle} = \frac{1}{2}.\]

using FiniteDifferenceMatrices
using SparseArrays

Δx = 0.1
X = -10:Δx:10
H = -1/2 * fdmatrix(length(X), n=2, m=2, d=:c, h=Δx) + spdiagm([1/2*x^2 for x in X])
ψ = [π^(-1//4)*exp(-1/2*x^2) for x in X]
# S = sqrt(Δx * ψ' * ψ) # norm
E = (ψ' * H * ψ) / (ψ' * ψ) # energy

@show E
0.49968776025398826

Variational Method

This is an example of a variational calculation for the harmonic oscillator. We optimize the parameter $\alpha$ to minimize the energy $E$:

\[\frac{\partial E}{\partial \alpha} = 0.\]

The energy $E$ depends on the parameter $\alpha$ because the trial wave function $\psi_\mathrm{trial}$ depends on the parameter $\alpha$:

\[\psi_\mathrm{trial}(x) = \left( \frac{2\alpha}{\pi} \right)^{\frac{1}{4}} \exp \left( - \alpha x^2 \right).\]

using FiniteDifferenceMatrices
using SparseArrays
using Printf

Δx = 0.1
X = -10:Δx:10
H = -1/2 * fdmatrix(length(X), n=2, m=8, d=:c, h=Δx) + spdiagm([1/2*x^2 for x in X])

println("  α              E")
println("------------------")
for α in 0.1:0.1:1.0
  ψ = [((2*α)/π)^(1//4)*exp(-α*x^2) for x in X]
  E = (ψ' * H * ψ) / (ψ' * ψ)
  @printf("%.1f    %.9f\n", α, E)
end
println("------------------")
println("minimum:")
println("  α = 0.5")
println("  E = 0.5")
  α              E
------------------
0.1    1.299999995
0.2    0.725000000
0.3    0.566666667
0.4    0.512500000
0.5    0.500000000
0.6    0.508333333
0.7    0.528571428
0.8    0.556250000
0.9    0.588888888
1.0    0.624999999
------------------
minimum:
  α = 0.5
  E = 0.5

In this case, the trial wave function of $\alpha=1/2$ is equal to the exact solution. Note that the "best" trial wave function (that gives the lowest energy, according to the variational principle) may not yield a better value for other properties (such as the norm or expected values). Please see J. F. Pérez-Torres, J. Chem. Educ. 2019, 96, 4, 704–707 (2019).

using CairoMakie
CairoMakie.activate!(type = "svg")

f = Figure(size=(420,300), fontsize=11.5)
ax = Axis(f[1,1], xlabel=L"x", ylabel=L"\psi(x)", limits=(-5,5,0.0,0.8), titlesize=16.5, ylabelsize=16.5, xlabelsize=16.5)
for α in 0.3:0.1:0.6
  ψ = [((2*α)/π)^(1//4)*exp(-α*x^2) for x in X]
  lines!(ax, X, ψ, label="α = $α")
end
lines!(ax, X, x -> π^(-1//4)*exp(-1/2*x^2), label="exact", color=:black, linestyle=:dash, linewidth=2)
axislegend(ax, position=:rt, rowgap=0, padding=(0,0,0,0), framevisible=false)
f
Example block output

Eigenvalue Problem

The eigenvalue problem of the Hamiltonian matrix $\pmb{H}$ gives approximate energies and approximate wave functions. Please refer to the Antique.jl for the closed forms of the analytical solutions.

using FiniteDifferenceMatrices
using SparseArrays
using LinearAlgebra
# using ArnoldiMethod
using Printf
import Antique
HO = Antique.HarmonicOscillator(k=1.0, m=1.0, ℏ=1.0)

Δx = 0.1
X = -5:Δx:5
I = keys(X)
T = -HO.ℏ^2/2/HO.m * fdmatrix(length(X), n=2, m=8, d=:c, h=Δx)
V = Diagonal([Antique.V(HO,x) for x in X])
H = T + V

# decomp, history = partialschur(H, nev=10, tol=1e-9, which=SR())
# E = real.(decomp.eigenvalues)
E, ψ = eigen(Matrix{Float64}(H))

println(" n         numerical        analytical")
println("--    --------------    --------------")
for n in 0:9
  @printf("%2d    %.12f    %.12f\n", n, E[n+1], Antique.E(HO, n=n))
end
 n         numerical        analytical
--    --------------    --------------
 0    0.499999999985    0.500000000000
 1    1.500000001062    1.500000000000
 2    2.500000034551    2.500000000000
 3    3.500000555298    3.500000000000
 4    4.500006084209    4.500000000000
 5    5.500049973732    5.500000000000
 6    6.500321040771    6.500000000000
 7    7.501649561884    7.500000000000
 8    8.506863078481    8.500000000000
 9    9.523313467073    9.500000000000

The vector ψ[:,1] corresponds to the eigenfunction for the ground state ($n=0$) and the vector ψ[:,n+1] corresponds to the eigenfunctions of the $n$-th excited state.

using CairoMakie
CairoMakie.activate!(type = "svg")

f = Figure(size=(840,600), fontsize=11.5)
for i in 1:4
    n = i - 1
    ax = Axis(
      f[Int(ceil(i/2)),rem(i-1,2)+1],
      xlabel = L"x",
      ylabel = L"|\psi(x)|^2",
      titlesize = 16.5,
      ylabelsize = 16.5,
      xlabelsize = 16.5,
    )
  lines!(ax, -5..5, x -> Antique.ψ(HO,x,n=n)^2, label="analytical", color=:black, linestyle=:solid, linewidth=1)
  scatter!(ax, X, (ψ[:,i] / sqrt(Δx)) .^ 2, label="numerical", markersize=6)
  axislegend(ax, "n = $n", position=:rt, rowgap=0, framevisible=false, titlesize=15.0)
end
f

Imaginary Time Evolution

The imaginary time Schrödinger equation and its formal solution are written as

\[-\frac{\partial \varPsi(x,\tau)}{\partial \tau} = \hat{H} \varPsi(x,\tau), \\ \varPsi(x,\tau) = \exp \left[- \hat{H} \tau \right] \varPsi(x,0).\]

It is projected to the ground state (g.s.) in the long imaginary-time limit $\tau\rightarrow\infty$. It is able to calculate the imaginary time evolution by a direct treatment because Julia has built-in matrix exponentials. The efficient matrix exponentials for sparse matrices are supported in FastExpm.jl.

using FiniteDifferenceMatrices
using SparseArrays
using CairoMakie
CairoMakie.activate!(type = "svg")

# domain X, Hamiltonian H, initial state ψ₀
Δx = 0.1
X = -10:Δx:10
H = -1/2 * fdmatrix(length(X), n=2, m=4, d=:c, h=Δx) + spdiagm([1/2*x^2 for x in X])
Ψ₀ = [-2.5 ≤ x ≤ 2.5 ? 0.2 : 0.0 for x in X]

# plot
f = Figure(size=(420,300), fontsize=11.5)
ax = Axis(f[1,1], xlabel="x", ylabel="Ψ(x,τ)", limits=(-5,5,0.0,0.8), titlesize=16.5, ylabelsize=16.5, xlabelsize=16.5)
for τ in [0.0, 0.1, 1.0, 10.0]
  Ψ = exp(-Matrix{Float64}(H)*τ) * Ψ₀
  lines!(ax, X, Vector{Float64}(real(Ψ / sqrt(Δx * Ψ' * Ψ))), label="τ = $τ")
end
lines!(ax, X, x -> π^(-1//4)*exp(-1/2*x^2), label="g.s.", color=:black, linestyle=:dash, linewidth=2)
axislegend(ax, position=:rt, rowgap=0, padding=(0,0,0,0), framevisible=false)
f
Example block output